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ABSTRACT
Graphs are a widely used data structure for collecting and analyzing

relational data. However, when the graph structure is distributed

across several parties, its analysis is challenging. In particular, due to

the sensitivity of the data each partymight want to keep their partial

knowledge of the graph private, while still be willing to collaborate

with the other parties for tasks of mutual benefit, such as data cura-

tion or the removal of poisoned data. To address this challenge, we

propose Crypto’Graph, an efficient protocol for privacy-preserving

link prediction on distributed graphs. More precisely, it allows par-

ties partially sharing a graph with distributed links to infer the

likelihood of formation of new links in the future. Through the use

of cryptographic primitives, Crypto’Graph is able to compute the

likelihood of these new links on the joint network without revealing

the structure of the private graph of each party, even though they

know the number of nodes they have, since they share the same

graph in terms of nodes but not the same links. Crypto’Graph im-

proves on previous works by enabling the computation of a diverse

set of similarity metrics in parallel without any additional cost.

The use of Crypto’Graph is illustrated for defense against graph

poisoning attacks, in which potential adversarial links are identi-

fied without compromising the privacy of the graphs of individual

parties. The effectiveness of Crypto’Graph in mitigating graph poi-

soning attacks and achieving high prediction accuracy on a node

classification task using graph neural networks is demonstrated

through extensive experimentation on two real-world datasets.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitization;
Intrusion/anomaly detection and malware mitigation; Distributed
systems security.
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1 INTRODUCTION
In today’s digital age, graphs have emerged as the predominant

format for representing relational data, as they naturally capture

both the relationships and structures inherent in such datasets.

Indeed, from social networks [37] to biological systems [29], the

interconnection of entities can be easily visualized and understood

through graphs. However, as data becomes increasingly distributed,

new challenges arise with respect to their analysis.

For example, in a scenario in which the structure of a graph

is distributed across multiple parties (social network distributed

across multiple servers, shared knowledge graph, etc), the objective

might be to study this structure without any party disclosing the

private details of their segment. Such an analysis could involve

predicting potential future links [11, 20, 41, 42] or identifying ma-

licious links that an adversary has introduced to compromise the

graph’s integrity [38, 39, 43]. As such attacks might happen without

being noticed, it is crucial to act proactively to defend against them.

To solve these issues, we propose Crypto’Graph, a novel proto-

col for privacy-preserving link prediction on distributed graphs.

To avoid privacy leakage, Crypto’Graph leverages cryptographic

primitives such as Diffie-Hellman shared secrets and Private Set In-

tersection Cardinality (PSI-CA), which ensure that similarities used

for link prediction can be computed on the joint network without

exposing the specifics of the private individual graphs. Furthermore,

Crypto’Graph can be used as a robust defense against graph poison-

ing attacks. More precisely, by predicting potential links without

jeopardizing the confidential information of individual nodes, it

can be used to effectively detect adversarial links, improving the

quality of downstream graph learning tasks.

The main contributions of this paper are the following.

• We introduce Crypto’Graph, a new protocol for distributed

privacy-preserving link prediction on graph data relying on

https://doi.org/10.1145/3626232.3653257
https://doi.org/10.1145/3626232.3653257
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the similarity via the computation of the numbers of com-

mon neighbors. Crypto’Graph is more efficient, by several

orders of magnitude, than state-of-the-art methods while

making it possible to derive other metrics such as the Jaccard

and Cosine similarity measures at no extra cost (i.e., in par-

allel). Finally, unlike previous works, it can be used on the

complete graph without compromising the confidentiality of

the private individual graphs as we demonstrate by proving

its security against graph reconstruction attacks.

• The applicability of Crypto’Graph is illustrated through a col-

laborative defense scenario against graph poisoning attacks.

More precisely, we show how to leverage our protocol to

privately derive link likelihood information in a distributed

manner, enabling the different parties to identify adversarial

links and remove them for a better utility on subsequent

tasks, such as the training of graph neural networks. In ad-

dition, we show that the benefit of collaborating via our pro-

tocol varies according to the common knowledge between

the participants, the amount of adversarial links introduced

as well as the type of attack conducted. Nonetheless, experi-

ments on real datasets demonstrate that it is almost always

beneficial to cooperate even when the data of one party has

not been poisoned. This encourages the use of our solution

even as a preprocessing approach to clean the graph when

no attack has been detected.

The outline of the paper is as follows. First, in Section 2, we re-

view the related work on link prediction both in the centralized and

distributed settings before introducing in Section 3 the background

notions on link prediction, graph neural network and private set

intersection, which are necessary to the understanding of our work.

Afterwards, in Section 4 we describe Crypto’Graph, our protocol

for privacy-preserving distributed link prediction before detailing

how Crypto’Graph can be used to defend against graph poisoning

in Section 5, in which we evaluate it on a real-world graph dataset.

2 RELATEDWORK
Based on the structure of the graph and potential additional in-

formation (such as the values of node attributes), link prediction

algorithms [11, 20, 41, 42] aim at inferring future potential links

in dynamic networks. One classical method for predicting a link

between two nodes consists in measuring the similarity of these

nodes by leveraging their neighborhood structure and predict new

links or not, based on the assumption that nodes that have com-

mon neighbors have more chance to develop future connections.

This similarity can be computed on the structural information be-

tween nodes but also by considering their attributes. For instance,

in research collaboration networks, Newman has shown that, in

domains such as physics, the more coauthors two researchers have

in common (i.e., the more the have neighbors in common), the more

they are likely to collaborate in the future [27]. In addition, he has

also observed that a scientist taken at random is more likely to

make new collaborations if he has many past ones, introducing

the notion of preferential attachment. Other similarity measures

such as the Jaccard similarity [17], the Cosine similarity [36] or the

Adamic-Adar index [2] can also be used for link prediction.

Machine learning-based models have also been proposed to

tackle the link prediction problem. For instance, Kashima and Abe

have extracted topological features from the graph and used them

to train a model for supervised link prediction [18]. Zhang and

Chen have designed SEAL, a neural network-based architecture

for capturing the link formation law on a graph [41]. In particu-

lar, they have proven that low order subgraphs, composed only

of few hops-neighbors, are often sufficient to estimate high order

metrics that reason on the whole graph. They have also proposed a

framework for predicting new links using network-based heuristics

applied on these subgraphs. Other link prediction methods also try

to learn informative features for nodes while avoiding to explore

the complete graph. For example, Perozzi and collaborators have

used random walks in conjunction with the SkipGram model [23]

(commonly used in natural language processing to vectorize words)

to build representations of nodes based on samples of their neigh-

borhoods [30]. The Node2vec embedding technique [15] also relies

on a similar approach for neighborhood sampling in the graph to

generate continuous node feature representations that can then be

used to compare note to predict new links.

However, the aforementioned methods are focused on the cen-

tralised setting, in which there is a single graph in the hands of

only one party. Nonetheless, subsequent works have proposed ap-

proaches inspired by the previous ones adapted to the multi-graph

or distributed graph setting. More precisely, the multi-graph link

prediction can be defined as the setting in which each party owns

a graph with potentially different nodes and links. In contrast, the

distributed graph setting assumes that the parties hold the same

graph with respect to their nodes but not necessarily the same links.

For instance, some works have proposed to allow members of a

decentralised social network like Mastodon
1
, to define privacy con-

trols on their connections by specifying which of their friendships

they are willing to disclose [42]. The service provider can then use

this information to train a logistic regression model that privately

makes friendship recommendations.

Another recent work has considered the distributed graph setting

and enables multiple subgraph owners to make link predictions

by computing similarity metrics in a secure manner [40]. More

precisely by using secret sharing techniques, their approach can be

used to privately aggregate the local similarity scores, thus allowing

the different parties to make their decision based on the private

aggregate. However, their approach can induce an accuracy loss

in the prediction because it does not take into account the cross-

party similarities (similarity between a node 𝑥 in one subgraph,

and a node 𝑦 in another subgraph). Another recent approach [11]

computes the common neighbors similarity measure using three

instances of a Private Set Intersection (PSI) protocol, which we will

detail later in Section 3.3. However, it is not clear how this protocol

can be extended for the computation of other similarity measures

and its computational cost is higher than our approach.

In this paper, we introduce a method that addresses the short-

comings of the two former previous works. More precisely, our

protocol improves on the accuracy compared to [40] while allow-

ing to compute a wide range of similarity measures and thus not

being limited to common neighbors as in [11].

1
https://joinmastodon.org

https://joinmastodon.org
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3 PRELIMINARIES
In this section, we review the notations we will be using, before

introducing the preliminary notions of link prediction, graph neural

network and private set intersection, that are necessary to the

understanding of our work. The notations employed throughout

the paper are presented in Table 1.

Graph

V set of vertices (i.e nodes)
E set of edges (i.e links)
𝐺 = (V, E) graph of nodesV and links E

Γ(𝑥) ⊆ V neighbors of 𝑥 in 𝐺 (i.e, the nodes in
V that share a link with 𝑥 )

GNN

X ∈ R𝑑×|V | feature matrix where X[𝑖] is 𝑑−
dimensional feature vector of node 𝑖

Y ∈ R |V | labels of nodes where Y[𝑖] is the
label of node 𝑖

𝐺 = (V, E,X,Y) extended graph (with features and

labels)

A adjacency matrix of a graph

�̃�
adjacency matrix with self-

connections inserted (i.e �̃� = 𝐴 + 𝐼V )

�̃�
degree matrix (i.e, 𝐷𝑖𝑖 =

∑
𝑗 �̃�𝑖 𝑗 ) at a

specific layer

Crypto

𝑝, 𝑞
large prime 𝑝 and integer 𝑞 such that

𝑞 divides 𝑝 − 1
Z𝑝 set of integers modulo p

G𝑞 multiplicative group of order 𝑞

𝑔 generator of G𝑞

Table 1: Summary of the notations used in this paper.

3.1 Link Prediction
Link prediction [20, 27] is a graph learning task that aims to infer

the potential existence of links between nodes that are not currently

connected. Link prediction has many possible applications, such as

friend recommendation in a social network [20] or in healthcare

for the the study of contacts for epidemic control purposes [4]. A

lot of link prediction methods are based on the computation of the

similarity between neighborhoods of pairs of nodes. More formally,

considering two nodes 𝑥,𝑦 ∈ V , we can compute their similarity

in the following ways:

• Common Neighbors: The common neighbors similarity of

𝑥 and 𝑦 is defined as

CN(𝑥,𝑦) = |Γ(𝑥) ∩ Γ(𝑦) |

, which is the basically the size of the intersection between

the two sets of neighbours.

• Jaccard: The Jaccard similarity between 𝑥 and 𝑦 is defined

as

J(𝑥,𝑦) = |Γ(𝑥) ∩ Γ(𝑦) |
|Γ(𝑥) ∪ Γ(𝑦) | =

CN(𝑥,𝑦)
|Γ(𝑥) ∪ Γ(𝑦) |

, which can be defined as the size of the intersection over

the size of the union of the two sets of neighbours.

• Cosine: The cosine similarity between 𝑥 and 𝑦 is given by

Cosine(𝑥,𝑦) = |Γ(𝑥) ∩ Γ(𝑦) |√︁
|Γ(𝑥) | ×

√︁
|Γ(𝑦) |

=
CN(𝑥,𝑦)√︁

|Γ(𝑥) | ×
√︁
|Γ(𝑦) |

, which is basically the size of the intersection between the

two sets of neighbours normalized by a function of their

respective size.

In real-world scenarios, the graph might be distributed among

different parties. For example, a distributed social network like

Mastodon can be made of different instances, each representing

the local relationships of their users as a graph that is part of the

global network. Knowledge graphs collected by different entities

are another example of distributed graph. To account for this and

without loss of generality, we consider that the whole graph 𝐺 =

(V, E) is distributed among two parties 𝑃1 and 𝑃2 such that each

party entirely knowsV but only a fraction of E. Such setting can

be easily generalized to a more distributed setting (with more than

two parties) as shown in [40]. Let 𝐺1 (V, E1) denote the graph of

𝑃1 and 𝐺2 (V, E2) the graph of 𝑃2 such that E1 ⊆ E and E2 ⊆ E.
We consider the scenario in which 𝑃1 and 𝑃2 want to collaborate to

predict the existence of a link in their respective graphs without

revealing them due to confidentiality issues that may arise (e.g., the
graphs may represent personal relationships). A possible solution

to predict a link between 𝑥,𝑦 ∈ V is for 𝑃1 to privately share Γ1 (𝑥)
and Γ1 (𝑦) with 𝑃2, who in turn privately shares Γ2 (𝑥) and Γ2 (𝑦).

Subsequently, the link prediction primitive computes the simi-

larity measure on the joined neighborhoods of 𝑥 and 𝑦 and outputs

this measure to both 𝑃1 and 𝑃2. Finally, each party decides to predict

a link based on this result and a threshold chosen independently

as illustrated in Figure 1. The threshold is chosen to maximize the

prediction of links between nodes that actually create links in the

future, while minimizing false predictions.

Figure 1: An illustration of a collaboration between 𝑃1 and 𝑃2
to predict a link between the node 𝑥 (green) and𝑦 (blue). Here,
the link prediction primitive will output CN(𝑥,𝑦) that each
party 𝑃𝑖 will compare with their personal threshold, which is
1 for 𝑃1 and 3 for 𝑃2. Based on the result of this comparison,
a link between 𝑥 and 𝑦 can be added or not, in one or both
graphs 𝐺1 and 𝐺2.



CODASPY ’24, June 19–21, 2024, Porto, Portugal Azogagh, et al.

3.2 Graph Neural Networks
To take advantage of their structural information, deep learning

approaches have been adapted to the graph data format with the

advent of Graph Neural Networks (GNNs) [19, 34], which have

made it possible to harness the structure and the node properties in

graphs for various learning tasks. In a nutshell, most GNN models

take as input a graph 𝐺 = (V, E,X,Y) and learn the appropriate

features of each node, edge or subgraph to perform the predictions.

Different families of approaches have been introduced over the

years. For instance, representation learning algorithms [15, 30] are

deep learning-based architectures that represent nodes, edges or

subgraphs of a graph as a multidimensional vector. This vector

can then be used for various prediction tasks, such as community

identification (i.e., a form of clustering) and link prediction.

In this work, we focus onGraph Convolutional Networks (GCNs),

a specific type of network mimicking convolutions on images [19].

In GCNs, new node features are created with each node aggregating

information from its neighbors at each layer. More precisely, we

consider a semi-supervised node classification task that aims at

predicting the labels of test nodes based on the features, edges

and labels of a set of training nodes. Following the approach taken

in [19, 43], we consider a two layer neural network given by the

formula :

𝑍 = softmax

(
𝐴 ReLu

(
𝐴𝑋𝑊 (0)

)
𝑊 (1)

)
,

in which 𝐴 = �̃�−
1

2 �̃��̃�−
1

2 , and𝑊 (0) ,𝑊 (1) are the trainable param-

eters of the network and 𝑍 is the prediction of the network for a

given node.

Similarly to classical deep learning models, GNNs have been

shown to be vulnerable to adversarial attacks. More specifically for

the setting considered here, this means that an adversary can poison

the graph by injecting links or altering node features to influence

the prediction made by the model [38, 43]. Some of the classical

defenses against such poisoning attacks leverage link prediction

techniques [38, 39], in which a likelihood score is computed for

each edge, thus identifying unlikely links and considering them as

being potentially adversarial (before cleaning them).

3.3 Private Set Intersection
A Private Set Intersection (PSI) protocol [14] allows two or more

parties, each holding a private set of items to compute the inter-

section of their sets (i.e., items that they have in common) without

revealing any additional information. PSI has found many appli-

cations in the real world, such as private data mining [28], the

analysis of genomics or medical data [6, 24, 33, 35] or even botnet

detection [26]. Since it was first introduced, PSI has evolved in

many subvariants of protocols according to the scenario in which

it is applied. For example, if only one of the parties needs to obtain

the intersection at the end of the computation, it is called a one-way
PSI, while otherwise it is amutual PSI. Another type of PSI protocol
was developed according to the size of the set of each party. For

instance, if the sizes of the private sets are similar, it is refer to as a

balanced PSI while otherwise it is called an unbalanced one. More

generally, a classification has recently been proposed in [25].

In other scenarios, the parties may want to know how much
they share but not what exactly they have in common. This can

be solved using a PSI-CA (standing for Private Set Intersection

CArdinality), which cannot be directly instantiated from classical

PSI protocols. Among the cryptographic building blocks that can

be combined to develop a PSI-CA protocol, we can cite for instance

homomorphic encryption, as seen in works like [9, 16, 21], oblivious

transfer [13], generic public key techniques described in [10, 31],

or even commutative encryption similar to the method outlined

in [22]. In this latter approach, one party, 𝑃1, initiates the protocol

by sending its own set of items 𝑋 encrypted as 𝐸𝑛𝑐𝑃𝐾1
(𝑋 ) to 𝑃2.

Afterwards 𝑃2 shuffles the elements and sends them back to 𝑃1 as

𝐸𝑛𝑐𝑃𝐾2
(𝐸𝑛𝑐𝑃𝐾1

) (𝑋 ). Additionally, 𝑃2 sends its own set encrypted

as 𝐸𝑛𝑐𝑃𝐾2
(𝑌 ). By using a commutative encryption scheme, 𝑃1 can

“delete” its corresponding key 𝑃𝐾1 from 𝐸𝑛𝑐𝑃𝐾2
(𝐸𝑛𝑐𝑃𝐾1

(𝑋 )) to ob-

tain 𝐸𝑛𝑐𝑃𝐾2
(𝑋 ) and then compare the number of correspondence

with 𝐸𝑛𝑐𝑃𝐾2
(𝑌 ). This approach has inspired a lot of subsequent

PSI-CA including the one that we use in this paper which is based

on [8].

4 CRYPTO’GRAPH
In this section, we present our protocol Crypto’Graph, which en-

ables to perform link prediction on graph data distributed between

two parties in a privacy-preserving manner. However, our protocol

can easily be generalized to more than two parties as it has been

done before in [40].

4.1 Description
We propose two close variants of our protocol : one that ensures

maximum security via the refreshing of encryption keys at each

prediction, and an optimization of this first protocol based on a

caching mechanism.

Basic protocol. Crypto’Graph is close in spirit to the PSI func-

tionality, in the sense that it privately computes the common neigh-

bors of two nodes on a distributed graph. Let 𝐺1 = (V, E1) and
𝐺2 = (V, E2) be the private subgraphs owned by the semi-honest

parties 𝑃1 and 𝑃2. The main idea behind our approach is the follow-

ing: by representing the union graph𝐺1∪𝐺2 as a data structure that

masks the neighborhood of each node while keeping its cardinality,

it is possible to count the common neighbors of any two nodes. To

achieve this objective, we propose a solution based on the use of

Diffie-Hellman shared secrets [12]. Our solution can be divided in

two phases: an offline phase that can be precomputed before the

beginning of the concrete protocol, and the online execution of the

protocol on the precomputed data.

More precisely, for a link prediction performed between nodes 𝑥

and 𝑦, our protocol described in Figure 2 allows each party to repre-

sent the neighborhoods of the nodes as sets {𝑔𝛼𝛽𝑥𝑖 }𝑖∈{1,..., |Γ𝑘 (𝑥 ) | }
and {𝑔𝛼𝛽𝑦𝑖 }𝑖∈{1,..., |Γ𝑘 (𝑦) | } , with 𝑘 ∈ {1, 2} and in which 𝛼 and 𝛽

are secrets randomly sampled respectively and independently by

𝑃1 and 𝑃2. Those secrets have the property that they can be used

to compare the sets without disclosing the individual elements,

which we leverage to compute the oblivious union of the neighbors

of 𝑥 in both graphs, as well as for node 𝑦. Afterwards, we count

the common elements of those sets to determine the size of the

intersection.
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One of the strengths of our method is that by computing the

intermediary sets of neighbors of 𝑥 and 𝑦 separately, those results

can be reused to compute the Jaccard similarity by dividing the

common neighbors score with the size of the union of the neighbors

of 𝑥 and 𝑦. More generally, our method allows for the computa-

tion of any similarity metric involving the sizes of the immediate

neighborhood of two nodes [17, 27]. Figure 2 provides a graphic

illustration of the Crypto’Graph protocol, in which the offline phase

is represented in gray, and the online one in black.

Optimization via caching. As an additional contribution, we pro-

pose an optimization of the aforementioned algorithm based on a

caching mechanism. More precisely, by keeping the same 𝛼 and 𝛽

keys across predictions, for each node 𝑥 that has been involved in a

previous prediction, we can reuse the encryptions of its neighbors

{𝑔𝛼𝛽𝑥𝑖 }𝑖∈{1,..., |Γ (𝑥 ) | for all subsequent predictions involving 𝑥 . A
detailed analysis of this caching mechanism and its security are

provided in Section 4.3.

4.2 Performance Results
To assess the performance of our protocol, we evaluate it on a real

world graph commonly used in the literature for link prediction.

Our experiments are conducted on two subgraphs of the Polblogs

dataset from [32], which represents relationships between 1490

political blogging websites in the USA by depicting the websites as

nodes of the graph, and hypertext links between them as edges in

the graph. The original dataset contains a total of 16715 links.

The two subgraphs are obtained by sampling links from the

original dataset. More concretely, we use a method inspired by the

one in [40] to determine the membership of a link to one or both

of the graphs : we choose two values 𝑞1, 𝑞2 in the interval [0, 1],
such that 𝑞1 ≤ 𝑞2. Then, for each link in the original graph, we

sample a random value 𝑣 in the same interval. If the sampled value

lands in [0, 𝑞1], the link is attributed to 𝐺1 while if 𝑣 ∈]𝑞1, 𝑞2], the
link is added to 𝐺2 while otherwise the link is attributed to both

the subgraphs. This generation of the distributed dataset enables to

control the proportions of links owned by one or both of the graphs.

The experiments described hereafter are made with 𝑞1 and 𝑞2 sets

respectively to 0.3 and 0.6, which results in each subgraph solely

owning 30% and sharing 40% of the graph with the other entity.

Our implementation is single-threaded and developed in C++,

and for efficient exponentiation, we use the OpenSSL implemen-

tation of the NIST P-256 [1] elliptic curve. This choice allows to

achieve the typical 128-bit security level requirement in crypto-

graphic protocols. Experiments are run on a desktop computer

running the 20.04 LTS version of Ubuntu operating system with

64GB of memory, and 16 x 11th generation Intel i9@ 3.50 GHz cores.

Since the protocol operates entirely on one machine, there is no

network-related delay. In addition, our implementation uses the

caching mechanism described previously. We compute the common

neighbors heuristic for each pair of nodes in the graph. We also

re-implemented the solution of [11] as described by its authors

and present their performance next to ours in Table 2, with results

obtained being consistent with those presented in their original

paper. Three scenarios are considered : (1) predictions on all the

node pairs in the graph (all vs all), (2) predictions between a single

random node and all the other ones (one vs all) and (3) predictions

between two random nodes (one vs one). These results show a

drastic improvement of one to several orders of magnitude in both

computing time and communication.

4.3 Security Model
4.3.1 Security of the basic protocol. In this subsection, we intro-

duce the security model of our protocol and prove its security

against a semi-honest adversary
2
under well-known cryptographic

assumptions that we recall hereafter. In the following, we denote

the security parameter as 𝜆 and 𝑛 as the number of nodes.

Definition 4.1 (Discrete Logarithm Assumption). Let G be a cyclic

group of generator𝑔. The Discrete Logarithm Problem (DLP) is hard

in G if, for every efficient algorithmA, the following probability is

a negligible function of 𝜆 :

P[A(𝑔,𝑔𝑎) = 𝑎] .

Definition 4.2 (Decision Diffie-Hellman Assumption). Let G be a

cyclic group and 𝑔 be its generator. We assume that the bit-length of

group size is 𝑙 . The Decision Diffie-Hellman (DDH) problem is hard

in G if, for every efficient algorithmA, the following probability is

a negligible function of 𝜆:

|P[𝑥,𝑦 ← {0, 1}𝑙 : A(𝑔,𝑔𝑥 , 𝑔𝑦, 𝑔𝑥𝑦) = 1]−

P[𝑥,𝑦, 𝑧 ← {0, 1}𝑙 : A(𝑔,𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) = 1] |.

Definition 4.3 (One-More-Diffie-Hellman Assumption). Let G be a

cyclic group of order 𝑞 and 𝑔 be its generator. The One-More-DH

problem [7] is said to be (𝜏 , 𝑡 )-hard if for every algorithm A that

runs in time 𝑡 we have:

P[{(𝑔𝑖 , (𝑔𝑖 )𝑥 )}𝑖=1,...,𝑛+1 ← A𝐷𝐻𝑥 (.) (𝑔1, . . . , 𝑔𝑚)] ≤ 𝜏,

in which𝑚 > 𝑛 and A𝐷𝐻𝑥 (.)
is the algorithm A with access to a

“𝐷𝐻𝑥 (.)” oracle. We assume that A can make at most 𝑛 queries to

the 𝐷𝐻𝑥 (.) oracle.

Theorem 4.4. The security of the proposed protocol is ensured by
the DLP and the One-More-DH problem if both parties reinitialise
their keys 𝛼 and 𝛽 after each instantiation of the protocol.

Proof. Let 𝐺 = (V, E) denote a graph shared between two

parties 𝑃1 and 𝑃2. Let 𝑥 ∈ V be a node in 𝐺 and lets denote 𝑥𝑖 the

elements of Γ1 (𝑥) and 𝑥 ′𝑖 the elements of Γ2 (𝑥). During the protocol,
𝑃2 obtains the elements from 𝑃1 in the encrypted form 𝑎𝑖 = 𝑔

𝑥𝑖𝛼

that 𝑃2 cannot decrypt without 𝛼 because of the DLP. Afterwards,

𝑃2 encrypts his own elements and sends them in the form 𝑐𝑖 = 𝑔
𝑥 ′𝑖 𝛽

before encrypting the elements of 𝑃1 and sending them in the form

𝑎′
𝑖
= 𝑔𝑥𝑖𝛼𝛽 . From here, several scenarios are possible:

(1) If there are no elements in the intersection, then the elements

of 𝑃2 are protected by the hardness of DLP.

(2) If there is only one element in the intersection, for instance

𝑥 𝑗 = 𝑥 ′
𝑙
, 𝑃1 can get 𝑔𝑥 𝑗𝛼𝛽 = 𝑔𝑥

′
𝑙
𝛼𝛽

(by doing a modular

exponentiation of 𝛼 ∈ Z𝑞). The hardness of DLP implies

that 𝑃1 cannot find an algorithm A that runs in polynomial

time to recover 𝑥 𝑗𝛼𝛽 . Furthermore, even if we discard the

2
The term semi-honest adversary refers to a participant of the protocol that does not

deviate maliciously from it but tries to infer new knowledge about the inputs of other

parties from the information it gathers.
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Crypto’Graph Private Link Prediction

𝑃1 : 𝐺1 = (V, E1) 𝑃2 : 𝐺2 = (V, E2)
𝛼 ← Z𝑞 𝛽 ← Z𝑞

∀𝑥𝑖 ∈ Γ1 (𝑥), 𝑎𝑖 = 𝑔𝛼𝑥𝑖 ∀𝑥𝑖 ∈ Γ2 (𝑥), 𝑐𝑖 = 𝑔𝛽𝑥𝑖
∀𝑦𝑖 ∈ Γ1 (𝑦), 𝑏𝑖 = 𝑔𝛼𝑦𝑖 ∀𝑦𝑖 ∈ Γ2 (𝑦), 𝑑𝑖 = 𝑔𝛽𝑦𝑖

{𝑐𝜋 (1) , . . . , 𝑐𝜋 ( |Γ2 (𝑥 ) | ) } = Π({𝑐1, . . . , 𝑐 |Γ2 (𝑥 ) | )
{𝑑𝜋 (1) , . . . , 𝑑𝜋 ( |Γ2 (𝑦) | ) } = Π({𝑑1, . . . , 𝑑 |Γ2 (𝑦) | )

{𝑎1, . . . , 𝑎 |Γ1 (𝑥 ) | }
{𝑏1, . . . , 𝑏 |Γ1 (𝑦) | } ∀𝑎𝑖 ∈ {𝑎1, . . . , 𝑎 |Γ1 (𝑥 ) | }, 𝑎′𝑖 = 𝑎

𝛽

𝑖

∀𝑏𝑖 ∈ {𝑏1, . . . , 𝑏 |Γ1 (𝑦) | }, 𝑏′𝑖 = 𝑏
𝛽

𝑖

{𝑎′
𝜋 (1) , . . . , 𝑎

′
𝜋 ( |Γ1 (𝑥 ) | ) } = Π({𝑎′

1
, . . . , 𝑎′|Γ1 (𝑥 ) | })

{𝑏′
𝜋 (1) , . . . , 𝑏

′
𝜋 ( |Γ1 (𝑦) | ) } = Π({𝑏′

1
, . . . , 𝑏′|Γ1 (𝑦) | }){𝑎′

𝜋 (1) , . . . , 𝑎
′
𝜋 ( |Γ1 (𝑥 ) | ) }

{𝑏′
𝜋 (1) , . . . , 𝑏

′
𝜋 ( |Γ1 (𝑦) | ) }

{𝑐𝜋 (1) , . . . , 𝑐𝜋 ( |Γ2 (𝑥 ) | ) }
{𝑑𝜋 (1) , . . . , 𝑑𝜋 ( |Γ2 (𝑦) | ) }

∀𝑐𝜋 (𝑖 ) ∈ {𝑐𝜋 (1) , . . . , 𝑐𝜋 ( |Γ2 (𝑥 ) | ) }, 𝑐′𝜋 (𝑖 ) = 𝑐
𝛼
𝜋 (𝑖 )

∀𝑑𝜋 (𝑖 ) ∈ {𝑑𝜋 (1) , . . . , 𝑑𝜋 ( |Γ2 (𝑦) | ) }, 𝑑′𝜋 (𝑖 ) = 𝑑
𝛼
𝜋 (𝑖 )

JΓ(𝑥)K = {𝑎′
𝜋 (1) , . . . } ∪ {𝑐

′
𝜋 (1) , . . . }

JΓ(𝑦)K = {𝑏′
𝜋 (1) , . . . } ∪ {𝑑

′
𝜋 (1) , . . . }

CN(𝑥,𝑦) = |JΓ(𝑥)K ∩ JΓ(𝑦)K|
CN(𝑥,𝑦)

Figure 2: A diagram of Crypto’Graph, our privacy-preserving link prediction protocol for two nodes. Both parties are assumed to share a
known element 𝑔 ∈ G𝑞 . In the offline part (gray), both parties generate a key (𝛼 for 𝑃1 and 𝛽 for 𝑃2) and then encrypt the neighbors of the
nodes of 𝑥 and 𝑦 of their respective graphs. The online phase (black) begins with 𝑃1 transmitting the encrypted nodes to 𝑃2. Subsequently, 𝑃2
proceeds by re-encrypting them using his own key 𝛽 before shuffling them at random and sending them accompanied of his own encrypted
nodes. Hence, leveraging the commutativity of the encryption algorithm, 𝑃1 can incorporate their key to the nodes of 𝑃2. Finally once 𝑃1 gets
|Γ (𝑥 ) | and |Γ (𝑦) | by matching the ciphertexts, they can compute the similarity measure (here Common Neighbors, but it can also be Jaccard
and Cosine similarities as well).

Offline time (ms) Online time (ms) Communication (MB)

Topology Protocol 𝐺1 𝐺2 𝐺1 𝐺2 𝐺1 𝐺2

all vs all

[11] 2.82E+07 2.85E+07 1.42E+07 1.41E+07 1.02E+04 1.10E+04

Ours 7.56E+02 7.23E+02 2.72E+05 7.87E+02 6.93E-01 1.43E+00

all vs one

[11] 2.49E+04 2.62E+04 1.26E+04 1.25E+04 8.96E+00 9.74E+00

Ours 3.63E+02 3.78E+02 1.08E+04 7.70E+02 6.93E-01 1.43E+00

one vs one

[11] 1.07E+01 1.26E+01 5.32E+00 5.39E+00 3.84E-03 4.21E-03

Ours 1.11E+00 1.19E+00 4.52E-01 3.58E-01 2.89E-04 6.98E-04
Table 2: Online running time and communication performances of Crypto’Graph, compared to [11].

DLP assumption, 𝑥 𝑗𝛼𝛽 is indistinguishable from a random

element of Z𝑞 .
(3) If there are several elements in the intersection, say 𝑥 𝑗1 =

𝑥 ′
𝑙1
, . . . , 𝑥 𝑗𝑚 = 𝑥 ′

𝑙𝑚
, 𝑃1 can get 𝑔𝑥 𝑗1𝛽 , . . . , 𝑔𝑥 𝑗𝑚 𝛽 along with
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𝑔1 = 𝑔𝑥 𝑗1 , . . . , 𝑔𝑚 = 𝑔𝑥 𝑗𝑚 matching the One-More-DH as-

sumption. Indeed, this scenario arises due to the following

reasoning: if 𝑃1 possesses a 𝐷𝐻𝑥 (.) oracle facilitating the

retrieval of 𝑚 pairs, namely (𝑔1, 𝑔𝛽
1
), . . . , (𝑔𝑚, 𝑔𝛽𝑚), it is in-

feasible for 𝑃1 to devise an algorithm A that run in time 𝑡

and whose probability to recover an additional pair (𝑔𝑠 , 𝑔𝛽𝑠 )
where 1 ≤ 𝑠 ≤ 𝑚, is greater than 𝜏 . The intuition behind this

is to exploit 𝑔𝑠 in order to access the corresponding element

within the intersection set. Thus, 𝑃2’s privacy is ensured by

the One-More-DH assumption.

□

We have demonstrated that the neighborhood’s privacy of the

two nodes is preserved during the execution of Crypto’Graph un-

der cryptographic assumptions. One might wonder if this privacy

guarantee could be compromised when we apply the protocol to

all pairs of nodes. Indeed, an honest-but-curious adversary could

attempt to infer information from the number of neighbors of the

nodes that have been already considered during the protocol and

thereby try to reconstruct the common graph.

Theorem 4.5. The proposed protocol applied to all nodes is secure
against a semi-honest adversary. In addition, the worst-case complex-
ity to recover the entire graph is O(2𝑛

√
𝑛), in which 𝑛 is the number

of the nodes of the graph.

Proof. Let 𝐺 = (V, E) denote a graph shared between two

parties 𝑃1 and 𝑃2. We have seen that Crypto’Graph performs the

PSI-CA described in Figure 2 on pairs of nodes, and the protocol

can be instantiated multiple times to perform predictions on all the

node pairs in the graph of 𝑃1 denoted as 𝐺1 and 𝑃2 denoted as 𝐺2.

Focusing on 𝑃1 performing a PSI-CA between 𝑥 and all 𝑥𝑖 ∈ V\{𝑥},
it does𝑛−1 PSI-CA and sequentially receives𝑛−1 outcomes ranging

from 0 to 𝑛 − 2 (depending on the extent of shared nodes between

𝑥 and 𝑥𝑖 in 𝐺2). To assess the extent of information that 𝑃1 can

deduce while executing the protocol, one possibility is to conduct

a brute-force attack. This attack enables to derive an upper bound

on the cost incurred by 𝑃1 in reconstructing the merged graph𝐺 or

at least in determining the neighboring nodes of 𝑥 ∈ V . Thus, 𝑃1

has 𝑧𝑖 = |Γ(𝑥) ∩ Γ(𝑥𝑖 ) | for each 𝑥𝑖 ∈ V/{𝑥}, which leads to

(𝑛−2
𝑧𝑖

)
ways of reconstructing the neighborhood of 𝑥 based on this single

prediction. Consequently, the largest number of reconstructions

after a single prediction is when 𝑧𝑖 =
⌈
𝑛−2
2

⌉
. Therefore in the worst

case, 𝑃1 has (
𝑛 − 2⌈
𝑛−2
2

⌉)𝑛−1
possible ways of reconstructing the neighborhood of 𝑥 after pre-

forming all the predictions, which can be bounded by
2
𝑛−2
√
𝑛−2

accord-

ing to Stirling’s approximation. As a consequence the worst-case

complexity of the brute-force attack that aims at identifying the

neighborhood of a specific node is O( 2𝑛√
𝑛
). By extending this analy-

sis to encompass all nodes, the resulting complexity isO(2𝑛
√
𝑛). □

While this worst-case complexity is large enough to ensure the

privacy of the distributed graph it does not take into account the

structure of the graph. Indeed, we argue that the best case is when

the graph to recover is either a clique (i.e., a graph in which all

nodes are connected) or the opposite (i.e., a graph in which all

nodes are completely disconnected). In such an improbable scenario,

a single prediction is enough to reconstruct the neighborhoods

of the two nodes involved in the prediction, as they have all the

other nodes as common neighbors in the case of a clique, and no

common neighbor in the case of a completely disconnected graph.

The adversary removes the two nodes instantiated after each run of

the protocol and then re-runs the protocol with another two nodes.

By repeating this process

⌈
𝑛−2
2

⌉
times, the adversary achieves the

complete reconstruction of the graph. However, let us underline

the fact that cliques and anti-cliques are very specific types of

graphs, which are not very interesting to model as graphs in real-

life scenarios. To go beyond, some studies have shown that real-

life graphs are often scale-invariant (i.e., the distribution of node

degrees follows the power law) [3, 5] implying that it is extremely

rare in practice to have a clique to recover. Consequently, it may

be more meaningful to consider an average-case complexity in this

context in which we can assume a scale-invariant graph. Such a

study goes beyond the scope of this paper and will be future work.

4.3.2 Security of the caching-optimized protocol. Our caching opti-

mization is based on storing encryptions of previously seen nodes.

For each node 𝑥 involved in a link prediction, party 𝑃1 stores the

final encryptions of its neighbors {𝑔𝛼𝛽𝑥𝑖 }𝑖∈{1,..., |Γ (𝑥 ) | } . However,
this optimization might also induce some additional leakage of the

private graph, and give an advantage to 𝑃1 in reconstructing the

complete distributed graph. Imagine for instance that we would like

to predict links between node 𝑥 and all the other nodes of the graph.

If caching is used, 𝑃1 will be storing encryptions of the neighbors

of all the nodes in the graph. This means that 𝑃1 is now able to

additionally compute similarities between all pairs of nodes with

the stored encryptions, not just between 𝑥 and the other nodes.

The same observation can be made from the partial encryptions

{𝑔𝛼𝑥𝑖 }𝑖∈{1,..., |Γ1 (𝑥 ) | } and {𝑔𝛽𝑥𝑖 }𝑖∈{1,..., |Γ2 (𝑥 ) | } . By storing the par-

tially encrypted neighbors from 𝑃2, 𝑃1 can compute the number

of common neighbors of node pairs in 𝑃2 that were not meant

to be involved in the prediction. While this does not count as a

leakage if the goal is to perform predictions between all node pairs

(since the result of such an operation already gives the output of

the previously explained attack), the problem still needs to be ad-

dressed for other use cases. To prevent this problem, refreshing the

encryptions keys at each prediction is essential. We emphasize that

this key changing process can be asymmetric : to prevent 𝑃1 from

computing the number of common neighbors of its nodes, 𝑃2 can

refresh its encryption key 𝛽 at each prediction without 𝑃1 having

to change theirs. This ensures that two encryptions 𝑔𝛽1𝑥 , 𝑔𝛽2𝑥 of

the same node 𝑥 under different keys 𝛽1, 𝛽2 are different, and there-

fore cannot be used to identify common neighbors across multiple

predictions.

5 APPLICATION TO GRAPH SANITIZATION
Leveraging on our protocol, we can design a privacy-preserving

defense mechanism against attempts to poison data in a GNN ap-

plication. Hereafter, we provide experimental evidences of the ef-

fectiveness of this defense against state-of-the art graph attacks.
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5.1 Description
Our approach acts as a preprocessing step by helping to privately

clean the distributed graph before downstream learning tasks. The

core idea of our approach is to identify suspicious or unlikely edges

in the distributed graph based on the same approach as link predic-

tion, which we refer to as link removal. These suspicious connec-
tions could be indicative of malicious intent as it has been shown

in [38]. To obtain a likelihood score for each of the links on the joint

network, we run Crypto’Graph for all the possible pairs of nodes

in the network by computing the similarity measures introduced

in Section 3.1. A threshold 𝑡𝑖 is then set by each party 𝑖 , such that

all links between pairs of nodes that have a similarity below 𝑡𝑖 are

considered malicious and discarded from 𝐺𝑖 .

5.2 Experimental evaluation
To assess the benefit of our collaborative approach over individ-

ual defense strategies, we evaluate its effectiveness against various

types of attacks. We show how our distributed protocol can be lever-

aged to sanitize graphs before training graph neural networks for

graph classification. We consider targeted attacks that aim at chang-

ing the class of specific nodes in the graph as well as global attacks

that try to decrease the global classification accuracy over all the

nodes. More precisely, we measure the performance of our defense

against the IG-FGSM [38], Nettack [43] and Dice [44] attacks. The

FGSM attack, a targeted attack traditionally applied to continuous

image data, has been adapted to the discrete graph context by Wu

and collaborators with the use of integrated gradient, hence the

name IG-FGSM. Zugner and colleagues have proposed Nettack,

another targeted attack using gradients to identify high-impact

links and maliciously inject them in the neighborhood of an at-

tacked node. Finally, Dice has been introduced in [44] as a baseline

global attack, which simply randomly creates links between nodes

belonging to different classes while removing links between nodes

of the same class. Since Graph Convolutional Networks (GCNs)

have been shown to perform quite well for node classification and

given the usual two-layer network used in related papers [19, 43],

we choose a Graph Convolutional Network with a single hidden

layer as our learning architecture.

Figure 3 presents the experimental pipeline used in this section.

Our experiments start by creating two subgraphs from the Pol-

blogs dataset, as described in Section 4.2. Afterwards, we poison

𝐺1 and 𝐺2 using the previous attacks. Since Nettack and IG-FGSM

are targeted attacks, we select 20 nodes that will undergo these

attacks while this is not needed for Dice. Finally, we apply the

three different defense strategies on the graphs obtained. Given

graphs 𝐺𝑖∈{1,2} , we have identified the following key parameters

that might influence the outcome of the defense mechanisms and

subsequently the accuracy of the GCNs trained on sanitized data :

• The thresholds of similarity 𝑡1, 𝑡2 for link removal.
These parameters directly impact the number of links re-

moved during the sanitization. Indeed a high threshold might

induce a high false positive rate whereas a low threshold

could leave malicious links in the graphs (i.e., leading to false
negatives). Note that for party 𝑖 for the Jaccard and cosine

similarities, 𝑡𝑖 ∈ [0, 1], and 𝑡𝑖 ∈ N for the common neighbors

similarity.

Figure 3: Experimental pipeline for the application of
Crypto’Graph to graph sanitization. At the end of the
pipeline, we train simultaneously two GCNs on the different
versions of 𝐺1 and 𝐺2 given through the pipeline.

• The common proportion of links 𝑝𝑝𝑡 in the two graphs.
Since the graphs can have overlapping knowledge about the

global network, our assumption is that the less they share,

the more a collaborative defense is effective.

• The perturbation rates 𝑟1, 𝑟2 of the attacks. This factor
influences how many malicious links are introduced by the

attacks. More precisely, given the graph𝐺𝑖 , a perturbation

rate of 𝑟𝑖 on a certain node 𝑥 means that the attack is allowed

to add 𝑟𝑖 × 𝑑 (𝑥) links to node 𝑥 , in which 𝑑 (𝑥) is the degree
of node 𝑥 . In contrast, a 𝑟𝑖 -Dice attack on 𝐺𝑖 means that the

attack modifies (adds or removes) exactly 𝑟𝑖 × |E𝑖 | links in
the entire graph. For this parameter, our hypothesis is that

the more the graphs are attacked, the harder it becomes to

recover from such perturbations.

We present two arguments that show the performance of our

method for graph sanitization. First, we view our solution like a

binary classifier, and study its statistical performance in identify-

ing malicious links on a poisoned and distributed version of the

Polblogs dataset. Then, we evaluate the performance of a node clas-

sification task on the same dataset in relation to different ranges

of previous parameters. More precisely, we begin by exploring the

impact of the similarity threshold, before evaluating the variation

of the shared proportion of data and finishing with the experiments

on the perturbation rate.

5.2.1 Performance onMalicious Link Identification. To demonstrate

the protection of Crypto’Graph we start by giving an overview of

the ability of our method to identify malicious links on a distributed

graph. In this study, we set the common proportion of links 𝑝𝑝𝑡

to 0.5, and the two graphs are attacked at rates 𝑟1 = 𝑟2 = 0.5 for

IG-FGSM and Nettack, and 𝑟1 = 𝑟2 = 0.1 for Dice. We evaluate the

performance of our solution with the aid of ROC curves showing

the true positive rates and false positive rates obtained for the
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different defense settings in their local and distributed versions, as

shown in Figure 4. Each curve comes from the mean true positive

rates and false positive rates for the two graphs.

Figure 4: Performance of Crypto’Graph for malicious link
identification. The Jaccard, Cosine and Common Neighbors
based defenses are applied to graphs attacked at rates 𝑟1 =

𝑟2 = 0.5 by the IG-FGSM and Nettack attacks, and 𝑟1 = 𝑟2 = 0.1

by the Dice attack.

Those first results show the utility of our method in identifying

malicious links on a distributed graph. We can clearly see how

the distributed defenses outperform the local ones for most of the

attacks. To further illustrate the improvement provided by our

solution on a subsequent machine learning task, we explore in the

following sections the impact of different settings of the previously

identified parameters on the quality of our defense.

5.2.2 Impact of Similarity Threshold for Defense. In this section,

we study the accuracy of GNNs trained on graphs after local and

distributed defenses with different values of 𝑡 . More precisely, in

this series of experiments, the common proportion 𝑝𝑝𝑡 of links

between𝐺1 and𝐺2 is set to 0.5 (i.e., they both share 50% of the data

and each own 25% of fresh and original data). The parameters are

set to 𝑟1 = 0 and 𝑟2 = 0.5 for IG-FGSM and Nettack, while 𝑟1 = 0 and

𝑟2 = 0.1 for Dice. Figure 5 represents the evolution of the average

accuracy of GNNs trained on 𝐺1 and 𝐺2 in three settings: when

no attack and no defense have been performed, on the attacked

graphs without defense and on the attacked and sanitized graphs

with different defense mechanisms.

We summarize our findings on the impact of the similarity thresh-

olds as follows:

• As expected, different thresholds lead to different graph qual-

ities, which in turn induces varying performances for the

Figure 5: Impact of the similarity threshold 𝑡 for link removal
on the accuracy of GNNs trained on sanitized graphs. The
Jaccard, Cosine and Common Neighbors based defenses are
presented in the context of no attack, the IG-FGSM, Nettack
as well as Dice attacks.

trained GNNs. The same remark can be made for the simi-

larity metric used for defense.

• The distributed defense mechanisms tend to be better than

their local counterparts for most of the thresholds.

• In some situations, the defense mechanisms even allow for a

better performance than on the clean graphs. We believe that

this could be due to the fact that the defense removes the

outliers from the data and that this helps for the GNNs tasks.

This is an interesting finding that motivate the deployment

of such defenses even when it is not clear if the graphs have

been attacked.

• The Dice attack surprisingly improves the quality of the

graphs. To understand this, one should remember that this

attack is really simplistic, and thus might actually add absent

but likely connections in the graphs, making them more

useful for learning.

5.2.3 Impact of Shared Proportion of Links. Since the global net-
work can be distributed in many ways, we study the impact of

the distribution of links over 𝐺1 and 𝐺2. Namely, we vary the pro-

portion 𝑝𝑝𝑡 of common links owned by 𝐺1 and 𝐺2 such that 𝑝𝑝𝑡

ranges from 0 (E1 ∩ E2 = ∅) to 1 (E1 = E2 = E). 𝑡1 and 𝑡2 are set
to be the thresholds providing the best accuracy for each metric,

𝑟1 = 0, 𝑟2 = 0.5 for IG-FGSM and Nettack, 𝑟1 = 0 and 𝑟2 = 0.1 for

Dice. As before, three settings are considered for the evaluation:

no attack and no defense have been conducted, attack have been

performed without subsequent defense and finally attack and de-

fense have been deployed. This time again, the curves represent

the average accuracy of the two models. From the results of this

series of experiments presented in Figure 6, we derive the following

observations:
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• The distributed defense metrics stay consistently better than

the local ones over the whole range of proportions.

• The quality of the local defenses grows with the proportion

and gets near (sometimes exceeds) the performance of dis-

tributed defenses, meaning that the more each graph already

shares links with the other, the more they can get from a

local defense. This directly matches our initial assumption.

• Overall, the distributed defenses are more constant than

the local ones across multiple instances of experimentation,

which represents another advantage for them. Indeed in

practice, one is more likely to choose a defense with a high

and stable quality overtime.

• Again, the defense mechanisms (especially the distributed

ones) make the graphs even better than if they were not

attacked in the case of the IG-FGSM and Nettack attacks.

• As before, the Dice attack slightly improves the accuracy

obtained on an attacked graph.

Figure 6: Impact of the shared proportion (ppt) of links be-
tween 𝐺1 and 𝐺2 on the accuracy of the defense based on the
different similarity metrics (Jaccard, Cosine and Common
Neighbors), depending on the type of attack used (no attack,
IG-FGSM, Nettack and Dice).

5.2.4 Impact of Perturbation Rates. To demonstrate the perfor-

mance of Crypto’Graph against different attack rates, we also eval-

uate the accuracy of GNNs trained on graphs sanitized after various

forces of attack. To realize this, we study the combinations of three

perturbation rates 𝑟𝑖 ∈ {0, 0.5, 1} for the IG-FGSM and Nettack at-

tacks, and 𝑟𝑖 ∈ {0, 0.1, 0.2} for Dice. The common graph knowledge

𝑝𝑝𝑡 is set to 0.5. Here, we show the accuracy gain of the distributed

metrics over their local equivalents, with a positive margin mean-

ing that the distributed metric is better that the local one, whereas

a negative one favors the local metric. The results presented in

Figure 7 lead us to the following conclusions:

• Overall, each graph can find a positive margin for each of

the scenarios. This is especially important as the two graphs

are not necessarily sanitized using the same defense metric,

which leaves room for each graph owner to choose themetric

that best suits them, or even combine several metrics for a

better accuracy

• Often, the most attacked graph is the one with the lowest

accuracy gain, which validates our assumption that high

perturbation rates are more difficult to overcome.

• A perturbation rate of 1 is extreme, but in many of the reason-

able scenarios, it appears that it is not too costly for the least

attacked graph to cooperate and that it is always beneficial

for the most attacked one to do so.

Figure 7: Impact of the perturbation rate of the attacks on the
accuracy of GNNs trained on sanitized 𝐺1 and 𝐺2 based on
the Polblogs dataset. The amount of perturbation is denoted
as (𝑟1, 𝑟2) on top of histograms. The first and second bar of
each metric (i.e, each color) represents the accuracy gain for
𝐺1 and 𝐺2.

To support the genericity of our claim that using a distributed

defense is better than a local one, we argue with the results obtained

on the Cora dataset in Figure 8 that shows the same pattern as

what we observed with Polblogs. We use a version of the dataset

representing 2708 scientific papers as nodes, and 5278 citations as

edges.

6 CONCLUSION
In this article, we have proposed Crypto’Graph, a protocol for

privacy-preserving distributed link prediction. Crypto’Graph is

more efficient than the other state-of-the-art methods both in terms

of computation and communication, by one to several orders of

magnitude, while reaching exactly the same utility. Additionally, our

protocol is able to compute different similarity metrics, allowing for

data owners to choose the best one according to their specific needs.

We also demonstrate that Crypto’Graph is secure against external

eavesdroppers and against honest-but-curious participants. Based

on Crypto’Graph, we build a distributed defense mechanism against

data poisoning in graph neural networks application scenarios. Our
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(a) The impact of attacks’ perturbation rates on GNN accuracy

when trained on sanitized graphs 𝐺1 and 𝐺2.

(b) The impact of proportion of shared link between 𝐺1 and 𝐺2

with respect to the different similarity metrics across the

attacks.

Figure 8: Results on the Cora dataset.

experiments show that this mechanism is effective to mitigate those

attacks and can even be beneficial in the absence of attack. We also

show that the more disjoint the data of the participants is, the more

beneficial it is for them to cooperate via our distributed defense

mechanism. Those benefits vary according to the power of the data

poisoning attack. In reasonable attack scenarios, cooperation is a

good strategy while it is a little more complex in extreme ones.

As a defense against the graph reconstruction attack presented

above (which we have shown to be difficult to carry in the worst

case in our security analysis), we consider as future works the

application of methods like the occasional injection of dummy

links in the graphs or an adaptation of differential privacy in our

context. We would also like to propose a method for a private and

efficient choice of the defense threshold, which we assume known

by each of the parties in our current solution. In another direction,

we would like to better characterize the security of our method

by exploring more in-depth attack strategies and better estimating

the difficulty of a brute-force graph reconstruction attack in the

average case. Assuming malicious protocol participants and making

our solution secure against such parties is also a future work that

we consider. Finally, an interesting avenue would be to combine

several similarity metrics to better counter graph poisoning attacks.
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