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Abstract

Cryptographic approaches, such as secure multiparty computation,

can be used to securely compute a function of a distributed graph

without centralizing the data of each participant. However, the

output of the protocol can leak sensitive information about the

structure of the original graph. In particular, we propose an ap-

proach by which an adversary observing the result of a private

protocol for the computation of the number of common neighbors

between all pairs of vertices, can reconstruct the adjacency matrix

of the graph. In fact, this can only be done up to co-squareness, a no-

tion we introduce, as two different graphs can have the same matrix

of common neighbors. To realize this, we consider two adversary

models, one who observes the common neighbors matrix only and

a more informed one that has partial knowledge of the original

graph. Our results demonstrate that, from their common neigh-

bors matrix, graphs can be reconstructed with high accuracy (up

to co-squareness). The proposed reconstruction is also interesting

in itself from the point of view of graph theory.
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• Security andprivacy→Distributed systems security;Data anonymiza-

tion and sanitization; Social network security and privacy.
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1 Introduction

Graphs have emerged as the predominant format for representing

relational data, as they naturally capture both the relationships

and structures inherent in such datasets. Indeed, from social net-

works [24] to biological systems [18], the interconnection of entities

can be easily visualized and understood through graphs. However,

as data becomes increasingly decentralized, new challenges arise

with respect to its analysis. For example, in a scenario in which

the structure of a graph is distributed across multiple parties (e.g.,

a social network distributed across multiple servers or a shared

knowledge graph), the objective might be to study this structure

without centralizing this data and without each party disclosing

the private details of their segment.

For instance, in this setting, edge prediction and edge removal

techniques can be used to improve the quality of local knowledge.

More precisely, edge prediction aims to imply the existence of an

edge between two vertices, with typical use cases being in recom-

mendation systems or in social networks [9] but also in anomaly

detection, influence analysis and community detection [5]. In con-

trast, edge removal has for objective to decide if an edge between

two vertices should not exist. This can be used, for example, as

a counter-measure to data poisoning, in which adversarial edges

may have been introduced by an adversary to compromise graph

integrity [25, 26, 28]. One of the classical techniques for predicting

the existence/non-existence of an edge is based on the compu-

tation of the number of common neighbors and infers that two

vertices sharing several, respectively few, neighbors should proba-

bly be linked, respectively unlinked. For instance, Crypto’Graph [1]

enables the oblivious computation of the number of common neigh-

bors between a pair of vertices from a graph distributed among

two participants. From this number of common neighbors, each

participant can decide whether or not any pair of vertices should

share an edge in their own local graph, and thus perform local edge

prediction or removal. In addition, a private protocol to compute

the common neighbors matrix on a distributed graph could also

be applied in the context of social media platforms trying to im-

prove their recommendation algorithms by computing the number

47
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of common friends of their users across their joint networks, as

explored previously in the literature [1, 6].

Summary of contributions. In this work, we address this issue

by precisely characterizing what can be learned by an honest-but-

curious participant from the output of the protocol as well as the

knowledge of his own local graph. We also consider a less-informed

adversary that only has access to the output of the computation

of the number of common neighbors matrix, and tries to infer the

structure of the graph. Our main contributions can be summarized

as follows.

• We developed a novel graph reconstruction approach lever-

aging the common neighbors matrix. To achieve this, we

designed topological attacks that infer information on the

graph structure based on the number of common neighbors.

The knowledge of the graph obtained from these topological

attacks is then used to enhance the spectrum-based attack

introduced in a seminal work by Erdős et al. [8].

• Additionally, we have introduced a new notion of equiva-

lence between graphs based on their common neighbors

matrices, as well as an appropriate metric to fairly compare

the reconstructed graph and the original one.

• We demonstrate through experiments on real-world datasets

that it is possible to perfectly reconstruct certain graphs even

without a prior knowledge on their structure. We also show

how a partial knowledge of such structure can be leveraged

to achieve a more accurate reconstruction.

Outline. First, we formalize the problem addressed in Section 2 be-

fore reviewing the relevant literature in Section 3. Then, in Section 4,

we introduce the theoretical background necessary to understand

our attacks, such as the properties inferred from the common neigh-

bors matrix that we rely on to reconstruct the graph. Afterwards,

we describe the algorithms composing our graph reconstruction

method named GRAND in Section 5. Then, we report on the exper-

imental results in Section 6. before analyzing the performance of

our reconstruction in the presence of a differential privacy-based

defensive mechanism. Finally, we conclude the paper in Section 7

with a discussion on future work.

2 Problem definition

System overview. We consider an undirected graph 𝐺 = (V, E)
with no self-loop. The neighborhood of a vertex 𝑣 ∈ V on 𝐺 is

denoted as Γ(𝑣) and includes all vertices that share an edge with 𝑣

on𝐺 . For any two vertices 𝑢 and 𝑣 inV , the common neighborhood

of𝑢, 𝑣 ∈ 𝑉 on𝐺 is the set Γ(𝑢)∩Γ(𝑣). In particular, we are interested
in the common neighbors matrix, in which each entry (𝑢, 𝑣) contains
the number of common neighbors of 𝑢 and 𝑣 in the graph 𝐺 . It is

easy to see that this matrix is, in fact, the result of the matrix

multiplication of the adjacency matrix of 𝐺 by itself, which we

denote by𝐺2
. In addition, its diagonal is the degree sequence of𝐺 :

𝐺2 (𝑢,𝑢) = |Γ(𝑢) |. Table 1 summarizes the notations that we will

be using in the paper.

Adversary models. We consider two types of adversaries. The

first one corresponds to an external attacker obtaining the result

of a private computation of the common neighbors matrix on the

graph 𝐺 . This type of attacker does not have any prior knowledge

about 𝐺 and aims at reconstructing it solely based on 𝐺2
. This

adversary model has already been explored in previous work [8].

We designate this type of attacker as uninformed.

The second adversary model is motivated by the more general

setting in which the attacker has some prior knowledge of 𝐺 (e.g.,

the existence or non-existence of some of the edges of 𝐺). Such an

adversary could be, for instance, an honest-but-curious participant

who inputs their subgraph of the graph𝐺 to the private protocol to

obtain𝐺2
as output, and tries to reconstruct𝐺 from the knowledge

of their subgraph and 𝐺2
. We express the prior knowledge of the

attacker as a set of edges that exist in the graph denoted E1, as well
as a set of edges that do not exist called E0. The rest of the possible
connections between vertices are considered unknown. Remark

when E1 = E0 = ∅, the second adversary model corresponds to

the first, hence leading to a more general problem. We call such an

attacker an informed adversary.

Problem statement. From the above adversary models, we devise

the following problem statement:

Problem 1 (Reconstructing 𝐺 from 𝐺2, E0, E1). Let 𝐺 be a

graph, reconstruct 𝐺 from the knowledge of its common neighbors

matrix 𝐺2
and the lists E0 and E1 of non-existing and existing edges

in 𝐺 .

Table 1 gives a summary of the notations used in the paper.

V set of vertices (i.e., vertices)

E set of edges (i.e., links)

E1 set of existing edges known by adversary

E0 set of non-existing edges known by adversary

𝐺 = (V, E) graph of verticesV and edges E
Γ(𝑥) ⊆ V neighbors of 𝑥 in 𝐺 (i.e., {𝑣 ∈ V | (𝑣, 𝑥) ∈ E)
Γ★(𝑥) ⊆ V neighbors of 𝑥 in 𝐺★

𝐺2
common neighbors matrix of 𝐺

( i.e., 𝐺2 (𝑢, 𝑣) = |Γ(𝑢) ∩ Γ(𝑣) |))

Γ2 (𝑥) neighbors of 𝑥 in 𝐺2
, that is, vertices that

have at least one common neighbor with 𝑢

𝑀 |𝐸 matrix𝑀 restricted to 𝐸

𝜌
Proportion of existing and non-existing

edges known by attacker

Table 1: Summary of notations.

Some related works presented in the next section have tackled

the specific case of the reconstruction of𝐺 by an uninformed adver-

sary. We suspect that this problem may be NP-hard, as it is really

close to known NP-complete problems, such as the Intersection

Pattern problem [3] and the Square Root Graph problem [15] (in the

latter, the square root of a graph is different from the definition we

state in this paper, as is discussed in the next section). However, we

have not found a theoretical analysis of this exact problem, which is

not standard in graph theory, as isomorphic graphs do not have the

same square matrix in general (see the discussion in Section 4.2).

3 Related Work

The reconstruction of graphs has received much attention over

the years, with the motivation coming from different use cases,

such as recommendations in social networks [20, 24], uncovering
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hidden interactions between proteins or molecules [17] as well as

the discovery of unknown relationships between criminal organiza-

tions [14]. While the objective remains to reconstruct the network

as accurately as possible, the various approaches differ in their

initial knowledge and the adopted approaches.

However, the problem of recovering 𝐺 from 𝐺2
as defined in

Section 2 has received much less attention. More precisely, in the

field of linear algebra, the problem of finding the square root of a

matrix (the adjacency matrix of 𝐺 is one square root of the matrix

𝐺2
) is a well-studied problem. However, the matrix studied does

not necessarily correspond to a binary matrix (i.e., the adjacency

matrix of a graph). By construction, 𝐺2
is a positive semi-definite

matrix (psd), because there exists a matrix such that 𝐵𝐵𝑇 = 𝐺2
, this

matrix being 𝐵 := 𝐺 = 𝐵𝑇 . As𝐺 is symmetric, Theorem 7.26 in [11]

states that there exists a unique symmetric positive semi-definite

matrix serving as the square root of this𝐺2
. However, this theorem

does not solve our problem because 𝐺 , the square root that we are

looking for, may not be itself psd. Furthermore, the psd solution is

not even a binary matrix in general.

In the field of graph theory, different definitions of 𝐺2
co-exist,

with many defining it as a binary matrix. For instance, in [16] the

entries of the matrix represent the existence of a path of length

at most 2 between the vertices, which is 𝐺 ∪𝐺2
with 0-1 entries,

while in [2] it represents the existence of a path of length exactly 2

between the vertices. As a result, the considered problem is quite

different. In our setting, the value is the number of paths of length

exactly 2, which means that 𝐺2
may not be a binary matrix and 𝐺

is not a subgraph of it.

To the best of our knowledge, the work closest to ours is [8],

which proposes a method for the reconstruction of the adjacency

matrix of a (bipartite) graph, from the knowledge of the common

neighbors information between all pairs of vertices. Their approach,

which we revisit and improve as part of our contribution, relies

on the spectral domain of the adjacency matrix. More precisely,

it exploits the properties of the singular value decomposition of

the common neighbors matrix to iteratively reconstruct an ap-

proximation of the desired graph. However, relying on the graph’s

spectral domainmakes them susceptible to reconstruct a co-spectral

graph [21], which is a graph exhibiting an identical spectrum but

non-isomorphic by definition. The reconstructed graph may not

even have the same common neighbors matrix, as discussed later.

The problem of reconstructing 𝐺 from its sequence of degrees

(the diagonal of 𝐺2
) has also received a lot of attention [4, 12] but

the proposed solutions to solve this problem potentially require

exploring an exponential number of solutions [12]. Note that this

problem is more general than the one we tackle, since we have more

information. Also, in some settings we do not study, the diagonal

might not be available to the attacker.

This paper goes beyond existing work by considering a more

powerful adversary than previously studied in works such as [4, 8].

We propose a solution that achieves the best known reconstruction

performance of an undirected graph solely based on its common

neighbors matrix. In addition to that setting, we study the adver-

sarial model in which, besides the common neighbors matrix, the

adversary possesses some partial knowledge of the original graph.

Our experiments demonstrate that this additional knowledge grants

the adversary greater capacity to reconstruct the graph.

4 Theoretical building blocks

Recall that our objective is, given some partial knowledge of the

adjacency on 𝐺 , as well as 𝐺2
the common neighbors matrix, to

reconstruct 𝐺 . Our attack reconstructs 𝐺 through different steps.

Figure 1 depicts our representation of the reconstructed graph 𝐺★

during the attacks. It can be viewed as a complete graph in which

the edges are labeled respectively as 0, 1 or ? if in 𝐺 , they exist, do

not exist or we do not know if this is the case.

During the reconstruction, the cells of 𝐺★
are updated to reflect

the information learned. Hence, cells that have value ?s are turned

into 1𝑠 or 0𝑠 depending on the inference performed in 𝐺★
when

we learn the existence or absence of an edge in 𝐺 . The final recon-

structed graph obtained at the end of the attacks, which we denote

𝐺 , contains only 0s and 1s.

Figure 1: Example of a graph 𝐺★
and its adjacency matrix.

4.1 Spectrality vs topology

Consider the adjacency matrix of the graph𝐺 , also denoted as𝐺 . It

can be expressed as:

𝐺 = 𝑈Λ𝑈𝑇
(1)

in which 𝑈 is an orthogonal matrix and Λ is a diagonal matrix

containing the eigenvalues of 𝐺 . This decomposition shows that

there are two equivalent representations of the graph information:

the left-hand side of Equation (1), whichwe call the topology domain,

and the right-hand side, which we call the spectral domain. As

demonstrated by this equation, these two domains encode the same

information in different forms. As mentioned in [22], similar to

how signals can be analyzed in both time and frequency domains

via Fourier transforms, graphs can be studied in both topological

and spectral domains, with each domain better suited for analyzing

different properties of the graph.

The topology domain is the most intuitive representation of a

graph, in which vertices and their connections can be directly vi-

sualized and understood by humans. In this domain, it is easy to

reason about structural properties like paths, cycles, and connectiv-

ity patterns between vertices. Thus, this representation naturally

lends itself to analyzing local properties and deriving insights about

the graph’s structure through direct observation.

In contrast, the spectral domain studies graphs through the eigen-

values and eigenvectors of their adjacency matrices. While less

intuitive to human understanding, this domain has given rise to

spectral graph theory - a rich field that connects graph properties

to linear algebra. The interpretation of eigenvalues and eigenvec-

tors is not immediately obvious, but their study has revealed deep
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connections to many graph properties like connectivity, clustering

and symmetry.

4.2 Non-unicity of the solution

Two non-isomorphic graphs can share the same common neigh-

bors matrix, as do those illustrated in Figure 2, together with their

common neighbors matrix. We call this new notion of equivalence

between graphs co-square equivalence. Let us make precise that

co-square graphs must have exactly the same common neighbors

matrices without permuting any lines or columns. This is uncommon

in graph theory but it is necessary in our practical setting, since

the vertices are labeled and distinctive. One implication of this is

that co-squareness is incomparable with the notion of isomorphism

of graphs. Indeed, there are isomorphic graphs whose matrices of

common neighbors are only equal after a symmetric permutation

of lines and columns (e.g., a well-chosen permutation of vertices of

a graph with vertices of different degrees). Conversely, there are

non-isomorphic graphs with the same matrix of common neighbors

(such as those of Figure 2). Even without the interdiction of per-

muting lines and columns, to the best of our knowledge, co-square

graphs do not belong to any known graph theory category.

Co-squareness is also incomparable with co-spectrality. The

graphs in Figure 2 are not co-spectral as they have different eigenval-

ues, which are {−2,−1,−1, 1, 1, 2} for𝐺 and {−1,−1,−1,−1, 2, 2} for
𝐻 . Conversely, there exist non-isomorphic graphs sharing the same

eigenvalues [21, 23]. These graphs may not even have the same

sequences of degrees, which results in them not being co-square.

More details about co-spectrality will be given in Section 4.3.2.

Figure 2: Two co-square (and non co-spectral) graphs

In summary, we are in the presence of three notions of equiva-

lences between graphs. Isomorphism and co-spectrality are incom-

parable by definition, with co-squareness being also incomparable

to both notions. As non-unicity can lure us to construct a co-square

graph, prior knowledge of the target graph’s structure might help

to distinguish which is the right one. For instance, the a priori in-

formation that (1, 3) does not exist in 𝐺 removes the possibility

that 𝐻 would be the target graph. For instance, in our work, such

information is exploited by the informed adversary.

4.3 Inferring properties of 𝐺

Hereafter, we leverage the common neighbors information 𝐺2
, as

well as the partial knowledge E0, E1 to deduce properties about 𝐺 .

Recall that the partial reconstruction of 𝐺 is denoted by 𝐺★
while

the number of common neighbors between vertices 𝑢, 𝑣 ∈ V is

given by 𝐺2 (𝑢, 𝑣) and the degree of vertex 𝑢 is 𝐺2 (𝑢,𝑢).

4.3.1 Topological properties.

Proposition 1 (Rows of 𝐺2
and degrees of neighbors). Let

𝑢 ∈ V be a vertex on𝐺 . Then, the sum of the degrees of its neighbors

is equal to the sum of the 𝑢𝑡ℎ row in 𝐺2
:

∀𝑢 ∈ V,
∑︁
𝑣∈V

𝐺2 (𝑢, 𝑣) =
∑︁

𝑤∈Γ (𝑢 )
|Γ(𝑤) |. (2)

Remark that this is not a complete characterization of a common

neighbors matrix, as there are matrices satisfying this property

that do not correspond to any graph. However, we can exploit

Proposition 1 to infer unknown existing and non-existing edges in

𝐺 .

Proposition 2 (Completeness of a neighborhood in𝐺★
). Let

𝑢 ∈ V be a vertex of 𝐺 . If 𝑢 has the same degree on 𝐺 and 𝐺★
, then

the neighborhood of 𝑢 on 𝐺★
is complete :

∀𝑢 ∈ V, |Γ★(𝑢) | = |Γ(𝑢) | =⇒ ∀𝑣 ∈ V\Γ★(𝑢), (𝑢, 𝑣) ∉ E . (3)

Similarly, if two vertices 𝑢 and 𝑣 have the same number of common

neighbors on𝐺 and𝐺★
, then the common neighborhood of 𝑢 and 𝑣 is

complete:

∀𝑢, 𝑣 ∈ V, |Γ★(𝑢) ∩ Γ★(𝑣) | = |Γ(𝑢) ∩ Γ(𝑣) | =⇒
[∀𝑤 ∈ Γ★(𝑢)\Γ★(𝑣), (𝑤, 𝑣) ∉ E] .

(4)

Proposition 3 (Completing a neighborhood in 𝐺★
). Let 𝑢 ∈

V be a vertex on 𝐺 . If the following conditions are met :

(1) 𝑢 is missing 𝑘 neighbors ( i.e., |Γ(𝑢) | − |Γ★(𝑢) | = 𝑘);

(2) there are exactly 𝑘 vertices 𝑣1, . . . , 𝑣𝑘 such that we do not know

if (𝑢, 𝑣𝑖 ) exists;
then all edges (𝑢, 𝑣𝑖 ) must exist in 𝐺 .

Similarly, for common neighborhoods, if:

(1) 𝑢 and 𝑣 are missing 𝑘 vertices in their common neighborhood

(i.e., |Γ(𝑢) ∩ Γ(𝑣) | − |Γ★(𝑢) ∩ Γ★(𝑣) | = 𝑘);

(2) there are exactly 𝑘 vertices 𝑤1, . . . ,𝑤𝑘 such that we do not

know if (𝑢,𝑤𝑖 ) exists;
then all edges (𝑢,𝑤𝑖 ), (𝑣,𝑤𝑖 ) must exist.

Proposition 3 can be seen as the complementary of Proposition

2, in the sense that the latter identifies some 0s in 𝐺★
based on the

number of missing neighbors (or common neighbors), while the

former uses the same information to identify some 1s.

Proposition 4 (Triangles). Let 𝑢, 𝑣 be two vertices onV , if the

following conditions are satisfied:

(1) 𝑢 and 𝑣 are connected in 𝐺★
( i.e., (𝑢, 𝑣) ∈ E★

1
);

(2) 𝑢 and 𝑣 have at least one common neighbor ( i.e.,𝐺2 (𝑢, 𝑣) > 0);

then 𝑢, 𝑣 are in 𝑘 = 𝐺2 (𝑢, 𝑣) triangles. Their common neighbors are

then vertices𝑤1, . . . ,𝑤𝑘 ∈ V such that

∀𝑖 ∈ {1, . . . , 𝑘},𝐺2 (𝑢,𝑤𝑖 ) > 0 and 𝐺2 (𝑣,𝑤𝑖 ) > 0.

Proposition 5 (Bi-cliqes
1
). Let 𝑈 = {𝑢1, . . . , 𝑢𝑝 } and 𝑉 =

{𝑣1, . . . , 𝑣𝑞} be two sets of vertices inV . If the following conditions

are satisfied:

(1) the neighborhood of𝑢1 is complete : Γ(𝑢1) = Γ★(𝑢1) = {𝑣1, . . . ,
𝑣𝑞} ;

1
A bi-clique, or complete bipartite graph, is a bipartite graph in which each vertex is

connected to all the vertices in the other partition.
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(2) each vertex 𝑢𝑖 , 𝑖 ∈ {2, . . . , 𝑝} shares exactly 𝑞 common neigh-

bors with 𝑢1;

then 𝑈 ∪𝑉 forms a bi-clique, in which 𝑈 and 𝑉 are the associated

partitions.

Proposition 6 (Bipartition or disconnectedness of G). 𝐺2

is disconnected if, and only if, 𝐺 is either disconnected or bipartite.

An example of such a situation is given in Figure 2, in which

both a bipartite graph𝐺 and a disconnected graph𝐻 have the same

common (disconnected) neighbors matrix. Thus, given a discon-

nected matrix 𝐺2
(which can be determined in linear time), one

cannot decide with certainty if the studied graph is disconnected

or if it is bipartite. There are examples in which only a bipartite

graph exists, so one cannot focus on each of the components to

find a co-square graph (which is of course the best one can do if no

prior knowledge is given).

4.3.2 Spectral properties. 𝐺 being a real symmetric matrix, its

eigenvalue decomposition can be written as :

𝐺 = 𝑈 Σ𝑈𝑇 .

As𝑈 is orthogonal, we have 𝑈𝑇 = 𝑈 −1, which translates to

𝐺2 = (𝑈 Σ𝑈𝑇 )2 = 𝑈 Σ2𝑈𝑇 = 𝑈Λ𝑈𝑇 .

Consequently, the problem of reconstructing a matrix 𝐺 from the

spectrum of its square 𝐺2
can be solved by finding the right sign

for each eigenvalue. Indeed, for each eigenvalue 𝜆𝑖 of 𝐺
2
, we need

to choose between +
√
𝜆𝑖 and −

√
𝜆𝑖 as the corresponding eigenvalue

𝜎𝑖 of 𝐺 , leading to an exponential number of possibilities to ex-

plore. This sign assignment problem is likely what could make the

reconstruction problem NP-hard, since there are 2
𝑛
possible sign

combinations for the eigenvalues. Erdős and co-authors provided

in [8] a heuristic method exploiting this insight. More precisely,

their Greedy algorithm chooses the right eigenvalue based on the

following results from Eckart and Young theorem [7] :

Theorem 4.1 (Eckart and Young). The best rank-𝑘 approxima-

tion of 𝐺 in the Frobenius norm ∥·∥𝐹 is given by

𝑘∑︁
𝑖=1

𝑢𝑖𝜎𝑖𝑢
𝑇
𝑖

in which 𝜎𝑖 is the 𝑖-th largest eigenvalue of𝐺 and𝑢𝑖 is the correspond-

ing eigenvector.

This powerful theorem allows to reconstruct 𝐺 iteratively by

choosing the sign of

√
𝜆𝑖 that minimizes the Frobenius distance at

each step for 𝑖 = 1, . . . , 𝑛. Additionally, the early iterations are the

most important ones, as the largest eigenvalues (which contain the

most information) are the first ones. Therefore, any prior knowledge

of the graph should be used iteratively to “guide” the reconstruction

in the right direction, and the more knowledge the adversary has,

the better he can potentially guide the reconstruction.

5 GRAND

Hereafter, we propose several attacks for the reconstruction of 𝐺

given its common neighbors matrix 𝐺2
. We also describe how this

reconstruction can be enhanced from the knowledge of the existing

and non-existing edges E1, E0. More precisely, we first describe

deterministic attacks that can infer exactly the existence or non-

existence of edges in 𝐺 based on topological properties. Then, to

further improve the reconstruction, we then present heuristic at-

tacks for the reconstruction of𝐺 based on the spectrum of𝐺2
while

leveraging the partial reconstruction obtained after the topological

attacks. The algorithms for each of the procedures described below

are provided in detail in Appendix B.

5.1 Topological attacks

We now present how to leverage the propositions described pre-

viously to reconstruct 𝐺 . These inferences recover 𝐺 in an exact

manner with respect to 𝐺2
, which means that they guarantee that

the common neighbors in the reconstructed graph match 𝐺2
. Note

that some of them use prior knowledge (E0, E1). We start by incor-

porating the prior knowledge (if any) into the reconstructed graph

𝐺★
as follows:

• All existing edges in the prior knowledge get a label of 1 in

𝐺★
, which means that ∀(𝑢, 𝑣) ∈ E1,𝐺★(𝑢, 𝑣) ← 1.

• Similarly, non-existing edges in the prior knowledge get

assigned 0 in𝐺★
, whichmeans that∀(𝑢, 𝑣) ∈ E0,𝐺★(𝑢, 𝑣) ←

0.

• 𝐺 does not contain self-loops, so ∀𝑢 ∈ 𝑉 ,𝐺★(𝑢,𝑢) ← 0.

• All the other possible edges get a label of ?.

DegreeCombinationAttack. Proposition 1 enables the follow-

ing inference : given a vertex 𝑢, if there is only one candidate set

of vertices inV , 𝑆 = {𝑤1, . . . ,𝑤 |Γ (𝑢 ) | } such that

∑
𝑣∈V 𝐺2 (𝑢, 𝑣) =∑

𝑤𝑖 ∈𝑆 𝐺
2 (𝑤𝑖 ,𝑤𝑖 ), then (𝑢,𝑤𝑖 ) ∈ 𝐺 . One can use this observation

to identify potential vertices that belong to the neighborhood of a

certain vertex. Similarly, this proposition can also be used to infer

non-existing edges in 𝐺 : given two vertices 𝑢, 𝑣 , if the degree of a

vertex 𝑣 exceeds the sum of the 𝑢𝑡ℎ row in 𝐺2
(that is, without the

degree of 𝑢), then (𝑢, 𝑣) ∉ E. Figure 3 gives an illustration of this

attack by inferring the presence of edges in 𝐺 .

Figure 3: DegreeCombinationAttack. The sum of the row

of vertex 3 in 𝐺2
is equal to the sum of the degrees of 1, 2, 4

and 5. Thus, the edges (1, 3), (2, 3), (4, 3), (5, 3) do exist in 𝐺 .

For this attack to work, one needs to have the degree of each

vertex in 𝐺 . When 𝐺2
is fully available to the adversary, this is

given by the diagonal of𝐺2
. Moreover, this attack does not assume

that the attacker has prior knowledge of 𝐺 , allowing them to infer

information about 𝐺 even when E0 = E1 = ∅ (i.e. an uninformed

adversary).

. DegreeMatchingAttack. From Proposition 2, we can derive a

procedure to identify the vertices whose neighborhoods have been

completely recovered. This attack establishes the non-existence of

edges in𝐺 and puts 0’s in𝐺★
by comparing the degrees of vertices

on 𝐺★
and 𝐺 . An example of such inference is depicted in Figure 4.
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Figure 4: DegreeMatchingAttack. The degree of vertex 5

is equal to the number of its currently known neighbors in

𝐺★
. Thus all unknown edges in the neighborhood of 5 cannot

exist.

NeighborMatchingAttack. The previous attack can also be ap-

plied to elements other than the diagonal of𝐺2
, namely𝐺2 (𝑢, 𝑣), 𝑢 ≠

𝑣 . The intuition behind this reconstruction is the same: if the num-

ber of common neighbors between two vertices 𝑢, 𝑣 is the same

on 𝐺★
and 𝐺 , it must be that there is no common neighbor on 𝐺

other than the ones known in𝐺★
. This allows to insert 0s in𝐺★

by

looking at the known neighbors.

To realize this, consider for instance the special case of zero val-

ues in 𝐺2
. Such a situation reflects the absence of common neigh-

bors between the corresponding vertices: Γ(𝑢) ∩ Γ(𝑣) = ∅. Since
the edges of𝐺★

are included in𝐺 , we also have Γ★(𝑢) ∩ Γ★(𝑣) = ∅.
More precisely :

𝐺2 (𝑢, 𝑣) = 0 =⇒ [∀𝑤 ∈ Γ★(𝑢), (𝑤, 𝑣) ∉ E] .

DegreeCompletionAttack. If 𝑢 is missing 𝑘 edges in 𝐺★
to

reach a certain degree given by 𝐺2 (𝑢,𝑢) and its neighborhood also

has 𝑘 unknown edges, then all the unknown edges have to exist.

This attack is depicted in Figure 5.

Figure 5: DegreeCompletionAttack. Vertex 1 has one

known neighbor which is 3, and two unknown edges. Since

its degree is 3, all its unknown edges exist in 𝐺 .

NeighborCompletionAttack. The DegreeCompletionAttack

can be adapted to the other information in 𝐺2
. If 𝑢, 𝑣 have𝑚 com-

mon neighbors on𝐺★
and𝑚+𝑘 on𝐺 , and𝑢 has exactly 𝑘 unknown

edges in its neighborhood, then all 𝑘 potential neighbors of 𝑢 must

actually be common neighbors of 𝑢 and 𝑣 in 𝐺 .

TriangleAttack. . Proposition 4 allows the identification of

triangles from the known edges in 𝐺 as well as 𝐺2
. In Figure 6, tri-

angles can be identified by looking for vertices that share common

neighbors with both vertices of an existing edge (𝑢, 𝑣).

BicliqueAttack. When the neighborhood of a certain vertex 𝑢

is completely known, one can infer additional information about

Figure 6: TriangleAttack. Edge (1, 2) is known and vertices

1 and 2 have one common neighbor. Then, there exists one

triangle containing 1 and 2. Notably, 4 is the only vertex that

has common neighbors with both 1 and 2. Therefore 4 is the

vertex forming a triangle with 1 and 2.

connections between other vertices and 𝑢. For instance, if all the

𝐺2 (𝑢,𝑢) neighbors of 𝑢 are known, and 𝑣 has 𝐺2 (𝑢,𝑢) common

neighbors with 𝑢, then all the neighbors of 𝑢 are also neighbors of

𝑣 . Inversely, if the number of missing neighbors for 𝑣 is equal to the

number of missing common neighbors between 𝑣 and 𝑢, then all

the missing neighbors of 𝑣 are among the neighbors of 𝑢. Therefore,

𝑣 does not have another edge with any of the other vertices in the

graph. Figure 7 provides an illustration of this inference.

Figure 7: BicliqeAttack. The neighbors of vertex 5 (which

are 2 and 3) are all known because its degree on𝐺★
is equal to

𝐺2 (5, 5). Therefore, vertex 1, which has two common neigh-

bors with 5, is also connected to 2 and 3.

Combining the attacks. Our topological attacks come in two fla-

vors. Some of them, like the DegreeMatchingAttack and Neigh-

borMatchingAttack identify non-existing edges in the graph,

changing ?s into 0s in 𝐺★
. Complementarily, attacks such as the

DegreeCompletionAttack and NeighborCompletionAttack

identify existing edges, changing ?s into 1s states. Since the changes

made by one type of attack can influence the output of the other, the

process needs to be repeated until none of the procedures update

𝐺★
.

5.2 Spectral attack

Hereafter, we introduce algorithms for the reconstruction of 𝐺

based on its spectrum. Our solution revisits the greedy sign assign-

ment algorithm of [8], and improves it by taking into account an

additional constraint related to the partial knowledge of the graph

𝐺 . The main idea here is to iteratively find the best sign assignment

for each eigenvalue, starting from the first. Let us first denote by

E★
0
the 0s in 𝐺★

so far, E★
1
the 1s, and E★ = E★

1
∪ E★

0
. For each

eigenvalue, the best sign is the one which satisfies the following

two constraints :
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• Closeness to a binary matrix : Similarly to [8], we impose that

the reconstructed matrix be a binary one.

• Closeness to the known adjacency information: To account

for the already known information on the graph, we impose

that our reconstruction be close to it. Namely, for a given

potential edge (𝑢, 𝑣), our reconstructed adjacency matrix

should contain a value of 1 (respectively 0) at index (u, v) if

(𝑢, 𝑣) ∈ E★
1
(respectively E★

0
).

We formalize the above constraints as a minimization problem,

in which for the i-th singular value, we choose the sign 𝑠 ∈ {+,−}
that minimizes the joint distance with our objectives :

𝑚𝑖𝑛𝑠∈{+,−}𝛼


𝑀𝑠 − 𝐵𝑀𝑠




𝐹
+ 𝛽



𝑀𝑠 |E★ −𝐺★ |E★



𝐹
,

in which𝑀𝑠
denotes the reconstructed matrix computed with sin-

gular value 𝑠
√︁
Λ(𝑖, 𝑖). 𝐵𝑀𝑠

is the binary version of the reconstructed

matrix𝑀𝑠
. Precisely, for each row 𝑖 and column 𝑗 of𝑀𝑠

,

𝐵𝑀𝑠 (𝑖, 𝑗) =
{
1 if𝑀𝑠 (𝑖, 𝑗) > 𝑡,

0 otherwise,

in which 𝑡 is a chosen binarization threshold. The 𝛼 term for the

reconstruction of a binary matrix, and the 𝛽 term allows the recon-

struction of a matrix close to the known information in𝐺★
. Thus, 𝛼

and 𝛽 are weighting factors that enables to set a trade-off between

the two constraints. This is especially suitable for the case when we

already know a significant part of the matrix, as we can boost the

second term to benefit from that partial knowledge.𝑀𝑠 |E★ denotes

𝑀𝑠
restricted to the indices (rows and columns) contained in E★.

5.3 Targeted error forgetting

Often, the spectral attack will reconstruct𝐺 with errors. While cor-

recting errors in the reconstruction is not straightforward, we can

leverage our knowledge of 𝐺2
to detect some of them. Indeed, con-

sider two vertices𝑢, 𝑣 that do not have the right number of common

neighbors in the reconstruction. Then, it must be the case that there

is an error either in the neighborhood of 𝑢, in the neighborhood of

𝑣 or both. Therefore, in such cases we can rollback the updates of

the spectral attack, and put ?s in the neighborhood of 𝑢 and 𝑣 . This

heuristic cannot delete all the errors in the reconstruction (since 𝑢

and 𝑣 could have the right number of common neighbors, but the

wrong common neighbors), but we experimentally observed that it

allows to correct most of them, at the expense of some errors.

5.4 Co-square graph instantiation

Because of the possible existence of a co-square graph, some entries

in𝐺2
can be achieved with different attributions of edges in𝐺★

. An

example of such a scenario, extracted from Netscience, is depicted

in Figure 8–the number labels are the ones of Netscience.

For each separate component, the position of dotted edges with

respect to the blue vertices can be in three possible ways to yield

the values in𝐺2
: as they are pictured, or vertically or in diagonal.

For instance for the left example, the edges can be replaced by

edges (53, 226) and (54, 227) or by (53, 227) and (54, 226). The first
graph of 5 vertices (hence detached from Netscience) and its two co-

square graphs (which we just described) are the smallest co-square

graphs. In addition, they are isomorphic, in contrast to the first

Figure 8: Co-square sub-graphs in Netscience. Plain lines

are reconstructed edges while dotted lines are missing edges

in the reconstruction. For each component, adding the two

missing edges between any combination of two of the four

blue vertices yields a graph with equal matrix of common

neighbors.

co-square graphs presented in Section 4.2, which are the smallest

non-isomorphic co-square graphs.

In presence of co-square graphs or subgraphs, prior knowledge

of these components of 𝐺 is essential for reconstruction. In our

method, when no prior knowledge is given, or when it does not

contain any information about the co-square-inducing vertices, we

instantiate one co-square of the target graph after identifying the

co-square-inducing vertices based on 𝐺2
.

5.5 Pipeline

Our attack pipeline, depicted in Figure 9, unfolds as follows:

(1) We initialize 𝐺★
with the known information E0, E1. When

E0 = E1 = ∅, the adjacency matrix of this graph contains ?s

everywhere, except on the main diagonal in which there are

0s due to the fact that there is no loop in the graph;

(2) We run the topological attacks until no new information is

discovered on 𝐺 .

(3) We then pass the partial information gathered so far 𝐺★
to

the spectral attack, which optimizes the reconstruction to

be close to the known edges and non-edges learnt.

(4) Since the spectral method might introduce errors, we per-

form a targeted error forgetting that removes the adjacency

information of vertices in 𝐺★
based on 𝐺★2

and 𝐺2
.

(5) The error forgetting introduces ?s in 𝐺★
. To recover new

values, we run another round of topological attacks.

(6) To identify edges that were not recovered so far because of

co-squareness, we perform co-square subgraph instantiation.

6 Experiments

In the following, we present the performance of our algorithms

evaluated on various real-world datasets presented in Table 2. More

precisely, we compare our reconstruction performance with the

one reached by [8], while taking into account the prior knowledge

E0, E1. We simulate this prior knowledge by a uniform sampling of

the matrix 𝐺 , with a proportion of 𝜌 . In other words, the attacker

is allowed to know a proportion 𝜌 of 1s (edges) and 0s (non-edges)

from 𝐺 (i.e., informed adversary).

We evaluate the reconstruction performance of both adversary

models detailed in Section 2 with an amount of prior knowledge on

𝐺 between 0 (i.e., uninformed adversary) and 1 (i.e., fully informed

adversary). The following two metrics are used to quantify the

reconstruction performance:
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Figure 9: GRAND

Dataset |V| |E | Density Domain

Netscience [19] 379 914 0.0127 Co-authorship

Bio-diseasome [19] 516 1188 0.0089 Human diseases

Polblogs [13] 1490 16715 0.0151 Political blogs

Cora [13] 2485 5069 0.0016 Citations

Table 2: Datasets characteristics.

• Relative Absolute Error (RAE). The RAE measures the amount

of wrong predictions (positives and negatives) in proportion

of the number of edges in 𝐺 (also used in [8]).

𝑅𝐴𝐸 =



𝐺 −𝐺


𝐹

∥𝐺 ∥𝐹
.

• We introduce the Common Neighbors Error, as a measure

of error with regard to the common neighbors matrix. This

measure serves as an evaluation metric that takes into ac-

count the co-square equivalence explained in Section 4.2. To

a real attacker, it can also serve as an indicator of how close

they are to the real graph without knowing it beforehand.

𝐶𝑁𝐸 =



𝐺2 −𝐺2




𝐹

𝐺2




𝐹

.

The parameters of the spectral attack are chosen as follows :

• 𝛽 =
2· | E★ |
|V |2 . Since E★ contains the indices of the known

information in the reconstructed matrix, this choice of 𝛽

ensures that themorewe know about𝐺 , themorewe use that

information in our reconstruction. When 𝐺 is completely

known, 𝛽 = 1.

• 𝛼 = 1 − 𝛽 , to complement for the unknown information.

• 𝑡 = 0.5. This choice acts as a middle ground for binarizing

values between 0 and 1. In [8], Erdős and co-authors also

reported this value as the best one for their approach.

The reported values are averaged over 10 experiments.

Reconstruction by an uninformed adversary. In this scenario, the

attacker gets no prior knowledge, which means that all the edges

in 𝐺★
are labeled as ?s.

Reconstruction by an informed adversary. For this scenario, the

common neighbors matrix𝐺2
is provided to our attack pipeline, as

well as 𝐺★
, initialized as described previously. However, again we

want to clarify that the approach of [8] does not take into account

the prior knowledge of the graph, and there is no straightforward

way to include it either. To have a fair comparison with that ap-

proach, we consider in this scenario that when using the approach

of [8], the attacker reconstructs a graph𝐺 that they overwrite using

prior knowledge. Namely, edges in E0 are removed from 𝐺 and

edges in E1 are added to 𝐺 . All other possible edges stay as they

were in𝐺 . We call this modified approach of [8] the informed Erdös

approach.

From the perspective of 𝐺 . Figure 10 presents the RAE of both

approaches with respect to the amount of prior knowledge. The

shade for GRAND denotes the maximum and minimum RAE de-

pending on the instantiated co-square subgraph. Both approaches

benefit from additional prior knowledge, and GRAND consistently

reaches a lower RAE on all datasets, for all values of 𝜌 .

Figure 10: Relative Absolute Error (RAE) with respect to the

amount of prior knowledge 𝜌

From the perspective of𝐺2
. The results in terms of CNE, presented

in Figure 11, complement previous ones by alleviating the consider-

ation for co-square graphs. Without any prior knowledge, GRAND

reconstructs perfect co-square graphs of the target graph for Pol-

blogs, bringing the CNE to 0. Similar results have also been observed

on Netscience and Bio-diseasome. This shows that GRAND actu-

ally reaches the theoretical maximum reconstruction performance,

since without prior knowledge the attacker cannot guess which

co-square graph corresponds to the target graph.

Complexity. Most of our deterministic attacks iterate on all the

possible edges (in the worst case), making their complexity𝑂 ( |V|2).
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Figure 11: Common Neighbors Error with respect to the

amount of prior knowledge 𝜌

The only exception to that is DegreeCombinationAttack, which

might result in exponential complexity. In practice, this issue is

dealt with by performing that attack only for vertices with degree

in {1, 2}. However, the complexity of the complete pipeline is dom-

inated by the spectral attack, which, similar to [8] is in 𝑂 ( |V|3)
because of the singular value decomposition. Regarding the SVD,

its truncated version can be used to reduce the computational com-

plexity to 𝑂 (𝑘 |V|2), with 𝑘 being the rank of the decomposition,

which establishes a tradeoff between efficiency and accuracy.

In our experiments, the complete pipeline takes 18s for Polblogs

and 5min for Cora which are the most time-consuming, and takes a

few seconds for Netscience and Bio-diseasome. These timings were

obtained on a Macbook Pro 2020 with 16GB memory and an M1

chip. Additional experimental results can be found in Appendix A.

GRAND in the presence of defenses. We also study the recon-

struction capacity of our method in the presence of existing defen-

sive mechanisms. In this area, differential privacy-based methods

[10, 27] constitute the state-of-the-art.

We choose to study our reconstruction capacity for a graph

protected using the PrivGraph [27] method. PrivGraph uses noise

addition to privately determine graph properties such as inter-

community and intra community edge weights before reconstruct-

ing a similar graph to the original based on the (private) learned

properties, with the aim of achieving edge-privacy.

Figure 12: Attacks on a graph protected by PrivGraph. The

blue and orange lines denote the RAE after reconstruction.

The red line is the RAE measure between 𝐺 ′ and 𝐺 .

This experiment was designed for the following scenario: a party

produces an edge-private graph 𝐺 ′ from their initial graph 𝐺 , then

outputs the common neighbors matrix 𝐺 ′2 of the edge-private

graph. The adversary then tries to reconstruct the initial graph from

the common neighbors matrix of the edge-private one. A before,

we consider that the attacker can have some prior knowledge on

the initial graph. We vary the privacy parameter 𝜖 of PrivGraph

between 0.5 and 3.5, and present average values of the RAE for

each dataset in Figure 12. Again, the partial knowledge of the graph

allows GRAND to obtain a better reconstruction than [8].

7 Conclusion

In this paper, we introduced GRAND, a novel approach for re-

constructing graphs from their neighborhood data given by the

common neighbors matrix. This can have significant implications

in real-world scenarios, such as revealing hidden connections in

social networks or communication systems. More precisely, the

topological angle of attacks allows to infer information about the

existence or non-existence of edges in the target graph based on

the number of common neighbors of these vertices and on their

degrees. In particular, we have identified properties that can be

leveraged to infer this information about the graph’s structure.

The spectral angle uses eigendecomposition by incorporating in-

formation from the topological attack, iteratively reconstructing

the graph through its eigenvalues and minimizing the distance to

the partially recovered graph. We have shown, through multiple

experiments on various datasets, that our approach is, for most of

the cases, able to reconstruct graphs up to co-squareness, even for

an uninformed adversary.

We have also defined co-squareness, a new notion of equivalence

between graphs that is specific to the content of their common

neighbor matrices, a property not being shared by most isomor-

phic graphs. Moreover, we have introduced a novel reconstruction

metric, which focuses on the values of the square matrix, since in

the absence of prior knowledge, graphs that are co-square to the

original one are as good as one can hope.

Given the vast diversity of graphs, it is very challenging to gen-

eralize any attack to all types of graphs. Therefore, one of the future

research avenues will be to extend the attack to directed graphs,

bipartite graphs and other types of graphs. Another direction will

be to study the NP-hardness of the problem by reducing it to a

known NP-hard problem.
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A Experimental results

A.1 Errors made by an uninformed attacker

Figure 13: False Positives Rate, False Negatives Rate, Relative

Absolute Error and Common Neighbors Error with 𝜌=0.

Figure 14: Number of modifications made by the topological

attacks.

In figure 13, in addition to the RAE and CNE, we present the

False Positives Rate (FPR) and the False Negatives Rate (FNR), where

positives are edges and negatives are non edges.

A.2 Comparative importance of topological

attacks

Figure 14 showcases the fact that since adjacency matrices are very

sparse, attacks that only find 1s (e.g. TriangleAttack, Neighbor-

CompletionAttack) tend to make less modifications.
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Algorithm 3 Identifies absent edges in 𝐺 based on the degrees of

vertices in 𝐺 and 𝐺★

Require: Partial reconstruction𝐺★
, common neighbors matrix𝐺2

1: function DegreeMatchingAttack(𝐺★,𝐺2
)

2: for 𝑢 ∈ V do

3: if 𝐺2 (𝑢,𝑢) = |Γ★(𝑢) | then
⊲ The neighborhood of 𝑢 is complete

4: for 𝑣 ∈ V\Γ★ (𝑢 ) do
5: 𝐺★ (𝑢, 𝑣) ← 0 ⊲ Update𝐺★

6: end for

7: end if

8: end for

9: return𝐺★

10: end function

Algorithm 4 Identifies triangles in 𝐺 .

Require: Reconstructed graph 𝐺★
, common neighbors matrix 𝐺2

1: function TriangleAttack(𝐺★,𝐺2
)

2: edges← {(𝑢, 𝑣),𝐺★(𝑢, 𝑣) = 1} ⊲ Extract edges

3: for all (𝑢, 𝑣) ∈ edges do
4: 𝑆𝑢 = {𝑤 : 𝐺2 (𝑢,𝑤) > 0 and 𝑢 ≠ 𝑤}
5: 𝑆𝑣 = {𝑤 : 𝐺2 (𝑣,𝑤) > 0 and 𝑣 ≠ 𝑤}

⊲ Vertices that share common neighbors with 𝑢 and 𝑣

6: 𝑆 = 𝑆𝑢 ∩ 𝑆𝑣
7: if |𝑆 | = 𝐺2 (𝑢, 𝑣) then

8: for all𝑤 ∈ 𝑆 do

9: 𝐺★(𝑢,𝑤) ← 1

10: 𝐺★(𝑣,𝑤) ← 1

11: end for

12: end if

13: end for

14: return 𝐺★

15: end function

Algorithm 5 Identifies present edges by comparing the common

neighbors of pairs of vertices on 𝐺 and 𝐺★
.

Require: Reconstructed graph 𝐺★
, common neighbors matrix 𝐺2

1: function NeighborCompletionAttack(𝐺★,𝐺2
)

2: for (𝑢, 𝑣) ∈ V2
do

3: 𝑈 ← {𝑤 ∈ V,𝐺★(𝑢,𝑤) =?}
4: 𝑉 ← {𝑣 ∈ V,𝐺★(𝑣,𝑤) =?}
5: if 𝐺2 (𝑢, 𝑣) = |Γ★(𝑢) | + |𝑈 | then
6: for𝑤 ∈ 𝑈 do

7: 𝐺★(𝑢,𝑤) ← 1

8: 𝐺★(𝑣,𝑤) ← 1

9: end for

10: end if

11: if 𝐺2 (𝑢, 𝑣) = |Γ★(𝑣) | + |𝑉 | then
12: for𝑤 ∈ 𝑉 do

13: 𝐺★(𝑢,𝑤) ← 1

14: 𝐺★(𝑣,𝑤) ← 1

15: end for

16: end if

17: end for

18: return 𝐺★

19: end function

Algorithm 6 Identifies bi-cliques and their complements 𝐺 .

Require: Reconstructed graph 𝐺★
, common neighbors matrix 𝐺2

1: function BicliqeAttack(𝐺★,𝐺2
)

2: 𝑈 ← {𝑢,𝐺2 (𝑢,𝑢) = |Γ★(𝑢) |} ⊲ Nodes with satisfied degree

3: for all 𝑢 ∈ 𝑈 do

4: for all 𝑣 ∈ V do

5: if 𝐺2 (𝑢, 𝑣) = 𝐺2 (𝑢,𝑢) then ⊲ Bi-clique found

6: for all𝑤 ∈ Γ★(𝑢) do

7: 𝐺★(𝑣,𝑤) ← 1

8: end for

9: else

10: 𝑚𝐺 = 𝐺2 (𝑣, 𝑣) − |Γ★(𝑣) |
11: 𝑚𝐺2 = 𝐺2 (𝑢, 𝑣) − |Γ★(𝑢) ∩ Γ∗ (𝑣) |
12: if 𝑚𝐺 =𝑚𝐺2 then

13: for all𝑤 ∈ V\Γ★(𝑢) do
14: 𝐺★(𝑣,𝑤) ← 0

15: end for

16: end if

17: end if

18: end for

19: end for

20: return 𝐺★

21: end function

Algorithm 7 ToplogicalAttack

Require: Lists of edges and non-edges E1, E0, common neighbors

matrix 𝐺2

1: function TopologicalAttack(E1, E0,𝐺2
)

2: 𝐺★← Init(E1, E0) ⊲ Copy 1s and 0s into 𝐺★

3: while 𝐺★
has been updated do

4: 𝐺★← DegreeCombinationAttack(𝐺★,𝐺2
)

5: 𝐺★← DegreeMatchingAttack(𝐺★,𝐺2
)

6: 𝐺★← NeighborMatchingAttack(𝐺★,𝐺2
)

7: 𝐺★← DegreeCompletionAttack(𝐺★,𝐺2
)

8: 𝐺★← NeighborCompletionAttack(𝐺★,𝐺2
)

9: 𝐺★← TriangleAttack(𝐺★,𝐺2
)

10: 𝐺★← BicliqeAttack(𝐺★,𝐺2
)

11: end while

12: return 𝐺★

13: end function

Algorithm 8 Identifies existing edges by comparing the neighbor-

hoods of vertices on 𝐺 and 𝐺★

Require: Reconstructed graph 𝐺★
, common neighbors matrix 𝐺2

1: function DegreeCompletionAttack(𝐺★,𝐺2
)

2: for 𝑢 ∈ V do

3: 𝑉 ← {𝑣 ∈ V,𝐺★(𝑢, 𝑣) =?}
4: if 𝐺2 (𝑢,𝑢) = |Γ★(𝑢) | + |𝑉 | then
5: for 𝑣 ∈ 𝑉 do

6: 𝐺★(𝑢, 𝑣) ← 1 ⊲ Update 𝐺★

7: end for

8: end if

9: end for

10: return 𝐺★

11: end function
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Algorithm 9 SpectralAttack

Require: Partial reconstructed graph𝐺★
, SVD of𝐺2

(𝑈 ,Λ,𝑉 such

that 𝐺2 = 𝑈Λ𝑉 ), 𝛼, 𝛽 weighting factors.

1: function SpectralAttack(𝐺★,𝑈 ,Λ,𝑉 , 𝛼, 𝛽 )

2: 𝑀0 ← 0𝑛×𝑛

3: E★← {(𝑖, 𝑗) | 𝐺★(𝑖, 𝑗) ∈ {0, 1}} ⊲ Extract edges and

non-edges from 𝐺★

4: for 𝑖 = 1 to |V| do
5: 𝑀+

𝑖
← 𝑀𝑖−1 +𝑈 (:, 𝑖) ·

√︁
Λ(𝑖, 𝑖) ·𝑉 (:, 𝑖)𝑇

6: 𝑀−
𝑖
← 𝑀𝑖−1 −𝑈 (:, 𝑖) ·

√︁
Λ(𝑖, 𝑖) ·𝑉 (:, 𝑖)𝑇

7: 𝑑+ ← 𝛼


𝑀+

𝑖
− 𝐵𝑀+

𝑖




𝐹
+ 𝛽



𝑀+
𝑖
|E★ −𝐺★ |E★




𝐹

8: 𝑑− ← 𝛼


𝑀−

𝑖
− 𝐵𝑀−

𝑖




𝐹
+ 𝛽



𝑀−
𝑖
|E★ −𝐺★ |E★




𝐹

9: if 𝑑+ < 𝑑− then

10: 𝑀𝑖 ← 𝑀+
𝑖

11: else

12: 𝑀𝑖 ← 𝑀−
𝑖

13: end if

14: end for

15: return 𝐵𝑀

16: end function

Algorithm 10 TargetedErrorForgetting

Require: Graph reconstructed by spectral attack𝐺★
𝑠 , Graph recon-

structed by topological attacks 𝐺★
𝑡 , common neighbors matrix

𝐺2

1: function TargetedErrorForgetting(𝐺★
𝑠 ,𝐺

★
𝑡 ,𝐺

2
)

⊲ Common neighbors matrix on the reconstructed graph

2: 𝐺★2
𝑠 ← 𝐺★

𝑠 ·𝐺★
𝑠

3: for (𝑢, 𝑣) ∈ V2
do

⊲ Incorrect common neighbors

4: if 𝐺2 (𝑢, 𝑣) ≠ 𝐺★2
𝑠 (𝑢, 𝑣) then

5: for𝑤 ∈ V do

6: 𝐺★
𝑠 (𝑢,𝑤) ← 𝐺★

𝑡 (𝑢,𝑤)
7: 𝐺★

𝑠 (𝑣,𝑤) ← 𝐺★
𝑡 (𝑣,𝑤)

8: end for

9: end if

10: end for

11: return 𝐺★
𝑠

12: end function

B Algorithms

Algorithm 1 Determining existence of edges of𝐺 from the degrees

of vertices.

Require: Partial reconstruction𝐺★
, common neighbors matrix𝐺2

1: function DegreeCombinationAttack(𝐺★,𝐺2
)

2: for 𝑢 ∈ V do

3: 𝑠 ← Σ𝑣∈V𝐺2 (𝑢, 𝑣) ⊲ Sum of u-th row

4: 𝑑 ← 𝐺2 (𝑢,𝑢) ⊲ Degree of vertex u

5: 𝑆 = {} ⊲ Candidate set

6: candidate = {𝑣 | 𝐺2 (𝑣, 𝑣) < 𝑠 − 𝑑}
7: non_candidate = V\candidate
8: for all 𝐶 ⊆ candidate of size 𝑑 do ⊲ Search set

9: if 𝑆 = {} then
10: if Σ𝑤∈𝐶𝐺2 (𝑤,𝑤) = 𝑠 then

11: 𝑆 ← 𝐶 ⊲ Candidate set found

12: end if

13: else ⊲ Multiple sets found

14: 𝑆 ← {}
15: break

16: end if

17: end for

18: for all 𝑣 ∈ 𝑆 do ⊲ Update 𝐺★

19: 𝐺★(𝑢, 𝑣) ← 1

20: end for

21: for all 𝑣 ∈ non_candidate do
22: 𝐺★(𝑢, 𝑣) ← 0

23: end for

24: end for

25: return 𝐺★

26: end function

Algorithm 2 Identifies absent edges in 𝐺★
based on the numbers

of common neighbors in 𝐺 .

Require: Reconstructed graph 𝐺★
, common neighbors matrix 𝐺2

1: function NeighborMatchingAttack(𝐺★,𝐺2
)

2: for (𝑢, 𝑣) ∈ V2
do

3: if 𝐺2 (𝑢, 𝑣) = |Γ★(𝑢) ∩ Γ★(𝑣) | then
4: ⊲ The common neighborhood of 𝑢 and 𝑣 is complete

5: for𝑤 ∈ Γ★(𝑢)\(Γ★(𝑢) ∩ Γ★(𝑣)) do
6: 𝐺∗ (𝑤, 𝑣) ← 0 ⊲ Update 𝐺★

7: end for

8: for𝑤 ∈ Γ★(𝑣)\(Γ★(𝑢) ∩ Γ★(𝑣)) do
9: 𝐺★(𝑤,𝑢) ← 0 ⊲ Update 𝐺★

10: end for

11: end if

12: end for

13: return 𝐺★

14: end function
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